NARAYANA ENGINEERING COLLEGE::GUDUR

DEPARTMENT OF ELECTRICAL AND ELETRONICS ENGINEERING

Course Structure for B.Tech E.E.E w.e.f AY: 2021-22

Course	egory	Course Title	Contact Periods per week		edits	Scheme o	of Examinat Marks	ion Max.		
Code	Cat		L	Т	Р	Total	Cr	Int. Marks	Ext. Marks	Total Marks
21MA1001	BS	Algebra and Calculus	3	1	0	4	4	40	60	100
21PH1001	BS	Applied Physics	3	0	0	3	3	40	60	100
21ES1003	ES	Basic Electrical Circuits	3	0	0	3	3	40	60	100
21ES1001	ES	Problem Solving and Programming	3	0	0	3	3	40	60	100
21PH1501	BS	Applied Physics Lab	0	0	3	3	1.5	40	60	100
21ES1506	ES	Basic Electrical Circuits Lab	0	0	2	2	1	40	60	100
21ES1505	ES	Engineering and IT Workshop	0	0	3	3	1.5	40	60	100
21ES1501	ES	Problem Solving and Programming Lab	0	0	3	3	1.5	40	60	100
21EN1502	HS	Communication skills lab	0	0	2	2	1	40	60	100
21MC8001	МС	Mandatory course I :Induction Program	Induction Program							
		Counseling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester					20 Points		
		Total	12	1	16	29	19.5	360	540	900

SEMESTER I

Course Code	egory	Course Title	Contact Periods per week			edits	Scheme of Examin Max. Marks		ination s	
	Cat		L	Т	Р	Tot al	Cr	Int. Marks	Ext. Marks	Total Marks
21CH1001	BS	Chemistry	3	0	0	3	3	40	60	100
21MA1003	BS	Vector Calculus Complex Variables and Transforms	ector Calculus omplex Variables and 3 1 0 4 4 cansforms		4	40	60	100		
21ES1005	ES	Python Programming and Data Science	3	0	0	3	3	40	60	100
21EN1001	HS	English	2	0	0	2	2	40	60	100
21CH1501	BS	Chemistry Lab	0	0	3	3	1.5	40	60	100
21ES1503	ES	Engineering Graphics	0	1	4	5	3	40	60	100
21ES1508	ES	Python Programming and Data Science Lab	0	0	3	3	1.5	40	60	100
21EN1501	HS	English Language Lab	0	0	3	3	1.5	40	60	100
		Counseling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester 20 F			20 Points				
		Total	11	2	16	5 29	19.5	320	480	800

SEMESTER II

SEMESTER III

Course Code	egory	Course Title	Co	ontac	t Perio week	ods per	edits	Schem N	e of Exami Max. Mark	ination s
	Cat		L	Т	Р	Total	Cr	Int. Marks	Ext. Marks	Total Marks
21MA1006	BS	Probability Statistics and Numerical Methods	3	0	0	3	3	40	60	100
21ES1009	ES	Data Structures and Algorithms	3	0	0	3	3	40	60	100
21ES1010	ES	Electronic Devices and Circuits	3	0	0	3	3	40	60	100
21EE2001	PC	DC Machines and Transformers	3	0	0	3	3	40	60	100
21EE2002	РС	Electrical Circuit Analysis	2	0	0	2	2	40	60	100
21EE2003	РС	Power System Architecture	3	0	0	3	3	40	60	100
21ES1513	ES	Data Structures and Algorithms Lab	0	0	3	3	1.5	40	60	100
21ES1514	ES	Electronics Devices and Circuits Lab	0	0	2	2	1	40	60	100
21CD6001	SC	Career competency Development I	0	0	2	2	1	40	60	100
21CC6001	SC	Value added course/Certificate course I	0	0	0	0	1	40	60	100
21MC8002-13	MC	Mandatory course II	2	0	0	2	0			
		Counseling/Mentori ng	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semest				ter	20 Points		1
		Total	19	0	10	29	21.5	400	600	1000

SEMESTER IV

Course	egory	Course Title	Con	tact] w	Perio zeek	ds per	edits	Scheme	of Examinat Marks	ion Max.
Code	Cat		L	Т	Р	Total	Cr	Int. Marks	Ext. Marks	Total Marks
21EN1002	HS	Universal Human Values	3	0	0	3	3	40	60	100
21EE2004	PC	AC Machines	3	0	0	3	3	40	60	100
21EE2005	PC	Analog Electronic Circuits	3	0	0	3	3	40	60	100
21EE2006	PC	Engineering Electromagnetics	3	0	0	3	3	40	60	100
21EE2007	PC	Linear Control Systems	3	0	0	3	3	40	60	100
	OE	Open elective I	3	0	0	3	3	40	60	100
21EE2501	PC	DC Machines and Transformers Lab	0	0	3	3	1.5	40	60	100
21EE2502	PC	Electrical Circuits and Simulation Lab	0	0	3	3	1.5	40	60	100
21EE2503	PC	Linear Control Systems and Simulation Lab	0	0	3	3	1.5	40	60	100
21CD6002	SC	Career competency Development II	0	0	2	2	1	40	60	100
21IC6001	SC	Industry Oriented Course I	0	0	0	0	1	100		100
		Counseling/Mentorin g	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester 20 Points							
		Total	18	0	14	32	24.5	500	600	1100

SEMESTER V

Course Code	egory	Course Title	Co	ntact] w	Perio /eek	ds per	edits	Scheme	of Examinati Marks	on Max.
	Cat		L	Т	Р	Total	Cr	Int. Marks	Ext. Marks	Total Marks
21EE2008	РС	Digital Electronics and logic design	2	0	0	2	2	40	60	100
21EE2009	РС	Power Distribution and Distributed Generation	3	0	0	3	3	40	60	100
21EE2010	PC	Power Electronics	3	0	0	3	3	40	60	100
	OE	Open elective II	3	0	0	3	3	40	60	100
21EE4001-05	PE	Professional Elective I	3	0	0	3	3	40	60	100
21EE2504	PC	AC Machines Lab	0	0	3	3	1.5	40	60	100
21EE2505	PC	Analog Electronics and Simulation Lab	0	0	3	3	1.5	40	60	100
21EE2506	PC	Power Electronics and Simulation Lab	0	0	2	2	1	40	60	100
21CD6003	SC	Career competency Development III	0	0	2	2	1	40	60	100
21CC6002	SC	Value added course/Certificate Course II	0	0	0	0	1	40	60	100
21EE7501	PR	Internship/skill development Training I	0	0	0	0	1.5	00	100	100
21MC8002-13	MC	Mandatory course III	2	0	0	2	0	00	00	00
		Counseling/Mento ring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semes			ter		20 Points		
		Total	16	0	13	29	21.5	400	700	1100

SEMESTER VI

Course Code	egory	Course Title	Contact Periods per week		Credits	Scheme of	f Examinati Marks	on Max.		
	Cat		L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
21EE2011	PC	Advanced Power System Analysis	3	0	0	3	3	40	60	100
21EE2012	РС	Electrical Measurements and Instrumentation	2	0	0	2	2	40	60	100
21EE2013	PC	Switch Gear and Protection	3	0	0	3	3	40	60	100
	OE	Open Elective III	3	0	0	3	3	40	60	100
21EE4006-10	PE	Professional Elective II	3	0	0	3	3	40	60	100
21EE40011- 15	PE	Professional elective III	3	0	0	3	3	40	60	100
21EE2507	РС	Electrical Measurements and Instrumentation Lab	0	0	2	2	1	40	60	100
21EE2508	PC	Power Systems Lab	0	0	3	3	1.5	40	60	100
21CD6004	SC	Career competency Development IV	0	0	2	2	1	40	60	100
21IC6002	SC	Industry Oriented Course II	0	0	0	0	1	100		100
		Counseling/Ment oring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semeste			r	20 Points			
		Total	17	0	10	27	21.5	460	540	1000

SEMESTER VII

Course Code	gory	Course Title	Co	ntact	Perio week	ds per	edits	Scheme	e of Exami Iax. Mark	ination s
course coue	Cate		L	Т	Р	Total	Cre	Int. Marks	Ext. Marks	Total Marks
21EN5001-5	HS	Humanities and Social Science Elective	2	0	0	2	2	40	60	100
21EE2014	PC	Solid State Electric Drives	3	0	0	3	3	40	60	100
21EE2015	PC	Power System Operation and Control	3	0	0	3	3	40	60	100
	OE	Open Elective IV	3	0	0	3	3	40	60	100
21EE40016-20	PE	Professional elective IV	3	0	0	3	3	40	60	100
21EE40021-25	PE	Professional elective V	3	0	0	3	3	40	60	100
21EE2509	PC	Electronic systems design lab	0	0	2	2	1	40	60	100
21EE2510	PC	Power Systems Simulation Lab	0	0	3	3	1.5	40	60	100
21CD6005	SC	Career competency Development V	0	0	2	2	1	40	60	100
21CC6501	SC	Skill development Training	0	0	2	2	1	40	60	100
21EE7502	PR	Internship II/on job training/Com Ser Project	0	0	0	0	1.5	00	100	100
21MC8002-13	MC	Mandatory course IV	2	0	0	2	0			
		Counseling/Mentori	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semes			he Semes	ester 20 Points			
		Total	19	0	12	31	23	400	700	1100

SEMESTER VIII

Course	egory	Course Title	Con	tact v	Perio veek	ods per	edits	Scheme of Examination Max. Marks		
Code	Cat		L	Т	Р	Total	Cr	Int. Marks	Ext. Marks	Total Marks
21EE7503	PR	Project work, seminar and internship	0	0	0	0	12	60	140	200
			0	0	0	0	12	60	140	200

NECR B.TECH 21

OPEN ELECTIVES (OE) Offered by EEE Department

Department	Course Code	Open Elective			
	21EE3001	Artificial Neural Networks and Fuzzy Logic			
	21EE3002	Basic Electrical and Electronics Engineering			
	21EE3003	Energy Audit and Demand side Management			
Electrical and Electronics	21EE3004	Electrical Measurements and Instrumentation			
Engineering	21EE3005	Utilization of Electrical Energy			
	21EE3006	Industrial Automation Engineering			
	21EE3007	Industrial Electrical Systems			
	21EE3008	Renewable Energy Conversion Systems			
	21EE3009	Power Quality			

PROFESSIONAL ELECTIVES (PE)

Elective	Professional	Professional	Professional	Professional	Professional
Track/Group	Elective-1	Elective-2	Elective-3	Elective-4	Elective-5
Advanced Power systems	Industrial Electrical Systems (21EE4001)	Power System Planning (21EE4006)	Reactive Power Compensation and Management (21EE4011)	Power Quality (21EE4016)	Smart Grid Technologies (21EE4021)
Control Systems	System Modeling and Identification (21EE4002)	Advanced Control systems (21EE4007)	Digital Signal Processing (21EE4012)	Multivariable Control System (21EE4017)	Real Time Control System (21EE4022)
Electromechanical Systems	Machine Modeling and Analysis (21EE4003)	Electrical Machine Design (21EE4008)	Programmable Control Devices and Applications (21EE4013)	Hybrid Electrical Vehicles (21EE4018)	Automotive Electrical Engineering (21EE4023)
Energy Systems	Renewable Energy Conversion Systems (21EE4004)	Solar and Fuel Cell Energy Systems (21EE4009)	Wind and Biomass Energy Systems (21EE4014)	Utilization of Electrical Energy (21EE4019)	Energy Audit and Demand side Management (21EE4024)
Power Electronics	Advanced Power Electronics (21EE4005)	Advanced Electrical Drives (21EE4010)	HVDC and FACTS (21EE4015)	Advanced Power Converters (21EE4020)	Advanced Power Semiconductor Devices and Protection (21EE4025)

LIST OF HONOR SUBJECTS

S.NO	Course code	Course Name	L-T-P	Credits
1	21EEH001	Adaptive Control Systems	3-1-0	4
2	21EEH002	AC Drives	3-1-0	4
3	21EEH003	Advanced Power System Protection	3-1-0	4
4	21EEH004	Power System Wide area Monitoring and Control	3-1-0	4
5	21EEH005	Restructed Power Systems	3-1-0	4

LIST OF MINOR SUBJECTS

S.NO.	Course code	Course Name	L-T-P	Credits
1	21EEM001	Electrical Technology	3-1-0	4
2	21EEM002	Electrical Measurements and Instrumentation	3-1-0	4
3	21EEM003	Power System Architecture	3-1-0	4
4	21EEM004	Utilization of Electrical Energy	3-1-0	4
5	21EEM005	Linear Control Systems	3-1-0	4

Humanities and Social Science Elective

S. NO	Course code	Course Name	CREDITS
1	21EN1001	Managerial Economics & Financial Analysis	3
2	21EN1002	Management Science	3
3	21EN1003	E-Business	3
4	21EN1004	Organizational Behavior	3
5	21EN1005	Enterprise Resource Planning	3

PROFESSIONAL ELECTIVES (PE)

SEMESTER	SEMESTER Course code		CREDITS
V Sem	21EE4001-05	Professional Elective I	3
	21EE4006-10	Professional Elective II	3
v i Sem	21EE4011-15	Professional Elective III	3
VII Som	21EE4016-20	Professional Elective IV	3
v II Sem	21EE4021-25	Professional Elective V	3
		TOTAL	15

OPEN ELECTIVES (OE)

SEMESTER	SUBJECT	CREDITS
IV Sem	Open Elective I	3
V Sem	Open Elective II	3
VI Sem	Open Elective III	3
VII Sem	Open Elective IV	3
	TOTAL	12

SKILL ORIENTED COURSE (SC)

SEMESTER	Course code	SUBJECT	CREDITS
III Com	21CD6001	Career Competency Development I	1
III Selli	21CC6001	Value Added Course/Certificate Course I	1
IV Som	21CD6002	Career Competency Development II	1
IV Sem	21CC6001	Industry Oriented Course I	1
V Som	21CD6003	Career Competency Development III	1
v Selli	21CC6002	Value Added Course/Certificate Course II	1
VISom	21CD6004	Career Competency Development IV	1
vi Sem	21CC6002	Industry Oriented Course II	1
VII Som	21CD6005	Career Competency Development V	1
v II Selli	21CC6501	Skill Development Training	1
		TOTAL	10

PROJECT (PR)

SEMESTER	Course code	SUBJECT	CREDITS
V Sem	21EE7501	Internship I/on job training/Com Ser Project	1.5
VII Sem	21EE7502	Internship II/on job training/Com Ser Project	1.5
VIII Sem	21EE7503	Project work, seminar and internship	12
		TOTAL	15

HUMANITIES AND SOCIAL SCIENCES (HS)

SEMESTER	Course code	SUBJECT	CREDITS	
Ι	21EN1502	Communication skills lab	1	
II	21EN1001	English	2	
11	21EN1501	English Language Lab	1.5	
IV	21EN1002	Universal Human Values	3	
VII	21EN5001-8	Humanities and social	2	
V 11		Science Elective	Z	
		TOTAL	9.5	

BASIC SCIENCES (BS)

SEMESTER	Course code	SUBJECT	CREDITS
	21MA1001	Algebra and Calculus	4
Ι	21PH1001	Applied Physics	3
	21PH1501	Applied Physics Lab	1.5
	21CH1001	Chemistry	3
п	21MA1003	Vector Calculus, Complex Variables and	4
11		Transforms	4
	21CH1501	Chemistry lab	1.5
III	21MA1006	Probability Statistics and Numerical Methods	3
		TOTAL	20

ENGINEERING SCIENCES (ES)

SEMESTER	Course code	SUBJECT	CREDITS
	21ES1003	Basic Electrical Circuits	3
	21ES1001	Problem Solving and Programming	3
Ι	21ES1506	Basic Electrical Circuits Lab	1
	21ES1505	Engineering and IT Workshop	1.5
	21ES1501	Problem Solving and Programming Lab	1.5
	21ES1005	Python Programming and Data Science	3
П	21ES1503	Engineering Graphics	3
	21ES1508	Python Programming and Data Science Lab	1.5
	21ES1009	Data Structures and Algorithms	3
ш	21ES1010	Electronic Devices and Circuits	3
111	21ES1513	Data Structures and Algorithms Lab	1.5
	21ES1514	Electronics Devices and Circuits Lab	1
		Total	26

PROFESSIONAL CORE (PC)

SEMESTER		SUBJECT	CREDITS
	21EE2001	DC Machines and Transformers	3
III	21EE2002	Electrical Circuit Analysis	2
	21EE2003	Power System Architecture	3
		8	
	21EE2004	AC Machines	3
-	21EE2005	Analog Electronic Circuits	3
	21EE2006	Engineering Electromagnetics	3
	21EE2007	Linear Control Systems	3
IV	21EE2501	DC Machines and Transformers Lab	1.5
	21EE2502	Electrical Circuits and Simulation Lab	1.5
	21EE2503	Linear Control Systems and Simulation Lab	1.5
		16.5	
	21EE2008	Digital Electronics and logic design	2
-	21EE2009	Power Distribution and Distributed Generation	3
	21EE2010	Power Electronics	3
V	21EE2504	AC Machines Lab	1.5
v	21EE2505	Analog Electronics and Simulation Lab	1.5
	21EE2506	Power Electronics and Simulation Lab	1
		12	
	21EE2011	Advanced Power System Analysis	3
	21EE2012	Electrical Measurements and Instrumentation	2
VI	21EE2013	Switch Gear and Protection	3
	21EE2507	Electrical Measurements and Instrumentation Lab	1
	21EE2508	Power Systems Lab	1.5
		10.5	
	21EE2014	Solid State Electric Drives	3
	21EE2015	Power System Operation and Control	3
VII	21EE2509	Electronic systems design lab	1
	21EE2510	Power Systems Simulation Lab	1.5
		8.5	
		TOTAL	55.5

S NO	CATECODY	CREDITS PER SEMESTER								Credita
5. NU	CATEGORI	Ι	II	III	IV	V	VI	VII	VIII	Creans
1	HS	1	3.5		3			2		9.5
2	BS	8.5	8.5	3						20
3	ES	10	7.5	8.5						26
4	PC			8	16.5	12	10.5	8.5		55.5
5	PE					3	6	6		15
6	OE				3	3	3	3		12
7	SC			2	2	2	2	2		10
8	PR					1.5		1.5	12	15
	TOTAL	19.5	19.5	21.5	24.5	21.5	21.5	23	12	163

Overall Credits

Course	gory	Course Title	Contact Periods per week				edits	Scheme of Examination Max. Marks		
Code	Cate		L	Т	Р	Total	Cre	Int. Marks	Ext. Marks	Total Marks
21MA1001	BS	Algebra and Calculus	3	1	0	4	4	40	60	100
21PH1001	BS	Applied Physics	3	0	0	3	3	40	60	100
21ES1003	ES	Basic Electrical Circuits	3	0	0	3	3	40	60	100
21ES1001	ES	Problem Solving and Programming	3	0	0	3	3	40	60	100
21PH1501	BS	Applied Physics Lab	0	0	3	3	1.5	40	60	100
21ES1506	ES	Basic Electrical Circuits Lab	0	0	2	2	1	40	60	100
21ES1505	ES	Engineering and IT Workshop	0	0	3	3	1.5	40	60	100
21ES1501	ES	Problem Solving and Programming Lab	0	0	3	3	1.5	40	60	100
21EN1502	HS	Communication skills lab	0	0	2	2	1	40	60	100
21MC8001	МС	Mandatory course I :Induction Program					Induction F	Program		
		Counseling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester					20 Points		
		Total	12	1	16	29	19.5	360	540	900

SEMESTER I

NA DA VANA ENCINEEDING COLLECE, CUDID								
INAKA I AINA EINGIINEEKIING CULLEGE; GUDUK								
I-B. Tech		ALC	JEBRA AI	ND CALC	<u>ULUS (211</u>	MA1001)		R-2021
Semester	Н	ours / Wee	K	Total	Credit		Max Marks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
Ι	3	1	0	64	4	40	60	100
Pre-requis	ite: Intern	nediate Ma	thematics					
Course Ol	jectives:							
1.	To familia	arize the st	udents w	ith the the	ory of ma	trices and	quadratic form	ns.
2.	To analyz	e second o	order ordi	nary diffe	rential equ	lations.		
3.	To explain	the series	expansion	ns using m	ean value	theorems a	and the concept	ts of
	multivaria	ble calcul	1S.	U			1	
4.	To summa	arize the n	rocedure	to solve th	ne partial d	differentia	l equations.	
5	To explain	n the stude	ent with m	hathematic	cal tools n	eeded in e	evaluating mul	tiple
5.	integrals a	and its and	lications	iuuiioiiiuuii			, araanng ma	up io
Course O	utcomes:	After suce	cessful co	mpletion of	of the cou	rse, the st	udent will be a	able to:
	Make use t	he concepts	of Matrice	es to solve y	various En	gineering 1	problems	(BL-3)
$\frac{corr}{corr}$	Identify di	ifferent tyr	es of high	er order di	ifferential	equations	and their appli	cations in
	solving on	ginooring	nrohloms		incicintiai	equations	and then applied	$(\mathbf{RI} - 3)$
CO 3	A pply Mag	n voluo tho	proma Mul	• ti voriabla /	alaulus to	colvo ongi	a aning problem	(\mathbf{DL}^{-3})
<u> </u>	Apply Mea	n value the	brems, Mul	u variable (solve engli	ieering problen	IS. (BL-3)
CO 4	Apply a ran	ige of techn	iques for s	olutions of	first order	: Linear ar	nd non-Linear H	Partial
	Differentia	l Equation	s (PDE).					(BL-3)
CO 5	Apply the te	echniques o	f multiple	integrals fo	r the area	and volum	e of the region	bounded
	by curves.							(BL-3)

	CO-PO Mapping													
	PO												PSO	
CO	PO1 PO										PSO	PSO		
		2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	3												
CO2	3	3												
CO3	3	3												
CO4	3	3												
CO5	3	3												
					1-	Low, 2-	Medium,	3- High						

COUDCE	CONTENT
COURSE	CONTENT

MODULE – 1	Matrices	Hours: 16h(12L+4T)										
Rank of a matrix by echelon form, normal form. Solving system of homogeneous and non-												
homogeneous linear equations. Eigen values and Eigenvectors and their properties (without												
proof), Cayley-H	proof), Cayley-Hamilton theorem (without proof), finding inverse and powers of a matrix by											
Cayley-Hamilton	theorem, Diagonalization.											
At the end of the Mo	odule 1, student will be able to:											
1. Solving	system of linear equations.	(BL-3)										
2. Determ	ne the rank, eigen values and eigenvectors.	(BL-3)										
3. Find the	inverse and powers of a square matrix by Cayley-Hamilton Th	eorem. (BL-1)										
MODULE -2	Higher Order Ordinary Differential Equations with	Hours: 14h(11L+3T)										

Narayana Engineering College :: Gudur (Autonomous)

Department of E.E.E :: 2021-2022

Definitions, homogorial particular integral,	genous and non-homogenous, Complimentary function, method of variation of parameters. applications to L-C-I	general solution, R Circuits									
At the end of the Module 2, students will be able to: 1. Identify the essential characteristics of linear differential equations with constant coefficients. (BL-3) 2. Solve the linear differential equations with constant coefficients by appropriate method. (BL-3) 3. Classify and interpret the solutions of linear differential equations. (BL-2) 4. Solve the higher order differential equation by analyzing physical situations. (BL-3)											
MODULE-3	Mean Value Theorems and Multivariable Calculus	Hours: 12h (9L+3T)									
Taylor's and Mac differentiation, Ch variables, method	Taylor's and Maclaurin's theorems with remainders (without proof), related problems, Partial differentiation, Chain rule, Total derivative, Jacobians, maxima and minima of functions of two variables, method of Lagrange's multipliers.										
At the end of the Mod 1. Translate the 2. Find the maxi	At the end of the Module 3, students will be able to:(B)1. Translate the given function as series of Taylor's and Maclaurin's with remainders.(B)2. Find the maximum and minimum values of the function for two variables.(B)										
3. Apply Jacobia	Partial Differential Equations	(BL-3)									
and arbitrary functions, Solutions of first order linear partial differential equations using Lagrange's method, Solutions of first order non-linear partial differential equations- Standard forms-I, II, III and IV, Method of separation of variables. At the end of the Module 4, students will be able to: (BL-3) 2. Outline partial differential equations. (BL-3) 3. Solve the applications of PDE by using the method of separation of variables. (BL-3)											
MODULE-5	Multiple Integrals	Hours: 12h(9L+3T)									
Double integrals, integrals, change Finding areas and	change of order of integration, change of variables. of variables between Cartesian, Cylindrical and Spheri volumes using double and triple integrals.	Evaluation of Triple cal polar coordinates.									
 At the end of the Module 5, students will be able to: 1. Find the area bounded by a region using double integration. 2. Solve triple integrals. 3. Make Use of multiple integral techniques in engineering problems. 											
	Total hours	64h (48L+16T)									
L		1									

Content beyond syllabus:

- 1. L-U decomposition.
- 2. Deflection of Beams.
- 3. Taylor's series for function of two variables.
- 4. Homogeneous Linear Partial differential equations with constant coefficients.
- 5. Calculation of mass, Centre of gravity, moment of inertia.

Self-Study:	
-------------	--

Contents to promote self-Learning:

SNO	Торіс	CO	Reference
1	Matrices	CO1	https://youtu.be/P2pL5VThrzQ
2	Higher Order Ordinary Differential equations with constant coefficients	CO2	https://youtu.be/P7gVp333B6M https://youtu.be/btOCUmJkrrg
3	Mean value theorems & Multivariable Calculus	CO3	https://youtu.be/bJPuy0QZ-tE https://youtu.be/0apMXhWG_W8
4	Partial Differential Equations	CO4	https://youtu.be/kZ7Oa7iMiCs
5	Multiple Integrals	CO5	https://youtu.be/mIeeVrv447s

Text Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.
- 2. B.S. Grewal, Higher Engineering Mathematics, 44/e, Khanna publishers, 2017.

Reference Book(s):

- 1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 5/e, 2019 Narosa Publishing house
- 2. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education, 2017
- 3. H. K. Das, Er. RajnishVerma, Higher Engineering Mathematics, S. Chand, 2014
- 4. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press,9th edition 2020.

Online Resources/ Web References:

- 1. http://www.macs.hw.ac.uk/~simonm/linalg.pdf
- 2. http://www.e-booksdirectory.com/details.php?ebook=7400re
- 3. http://www.efunda.com/math/math_home/math cfm
- 4. http://www.ocw.mit.edu/resources/#Mathematics
- 5. http://www.sosmath.com/
- 6. http://www.mathworld.wolfram.com/

NARAYANA ENGINEERING COLLEGE (AUTONOMOUS) :: GUDUR													••	
I-B.Tech				APPL	JED F	PHYSI	CS (21PH1()01)			F	R2021	
Semester		Hou	ırs / W	eek		Tota	1	Credit			Ma	x Mar	ks	
	L		Т		Р	hrs		С	(CIE	SEF	Ŧ	TOTA	AL
Ι	3		0		0	48		3	4	40	60		100	
Pre-requis	ite: 1	Mathe	ematics	s Knov	wledge	e, Bas	ics c	oncepts	of Ph	ysics				
 Course Objectives: To understand optical phenomenon i.e. interference and diffraction related to their engineering applications. To explain the concepts and difference between classical free electron theory and quantum theory. To impart knowledge in basic concepts of free electron theory of metals and semiconductors. To illustrate the concepts of superconductor and nanomaterials in functioning of electronic devices. To familiarize the types of laser/optical fibres and their applications in communication engineering 														
devices	5	a. A f	ton and	agasty	1	mlation	n of t	haaa	no th	atuda		l ha ak		DTI
Course Ou	Translation I	S: AI	ter suc	cessiu	1 com	pletio	1 OI 1	the cour	se, the		ent Wil	$\frac{1}{1}$ be at	ble to:	BIL
COT	Expla	iin the	e conec	epts of	interi	erence	e, dif	Iraction	using	Huyg	gen s w	ave tr	heory	2
CO 2	Comp for un	orehen Idersta	id the c anding	onecp	ts of m atter at	atter v atomi	vaves c sca	s, wave i le	functio	ons and	1 their	interpr	retation	1
CO 3	Sumn metal	narize s and	the im	portar	ice of f ors	free ele	ectror	n theorie	es in de	etermiı	ning th	e prop	erties of	1
CO 4	Under applic	rstand cation	l the co s in rel	oncept evant f	s of su fields	ipercor	nduct	or and	nanom	aterial	s to fa	milari	ze their	2
CO 5	Realiz	ze the	impor	tance	of the	lasers	and o	optical f	ibres i	n engi	neering	g and i	medical	2
	applic	cation	s							-				
					C	CO-PO	Ma	pping						•
CO						P	0						PS	0
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2												
CO2	3	2						_						
CO3	3	2						_					1	
CO4	3	-				1		_					1	
CO5	3	1				1							1	
					1: Lo	w, 2-M	lediu	m, 3- Hi	ıgh					

COURSE CONTENT

MODULE – 1

WAVE OPTICS

10 HOURS

Interference-Principle of Superposition, Interference of light, Conditions for sustained Interference, derivation of conditions for constructive and destructive interference of reflected light from a thin film, Newton's Rings-experimental arrangement, Determination of Wavelength; engineering applications of Interference

Diffraction-distinction between interference and diffraction, differences between Fresnel & Fraunhoffer diffractions, Fraunhoffer Diffraction at single slit(derivation, energy distribution curve), Fraunhoffer Diffraction at a Double slit (derivation, energy distribution curve), Theory of Diffraction Grating, Engineering applications of diffraction

At the end of the Module 1, students will be able to:

- 1. **Explain** the need of coherent sources and the conditions for sustained interference (L2)
- 2. **Identify** engineering applications of interference including homodyne and heterodyne detection (L3)
- 3. Analyze the differences between interference and diffraction with applications (L4)

MODULE -2 INTRODUCTION TO QUANTUM MECHANICS

9 HOURS

Matter waves –de-Broglie hypothesis- properties, G.P.Thomson experiment, Phase and group velocities—Expression for group velocity; Heisenberg's uncertainty principle; Schrodinger's time dependent and independent wave equations – Physical significance of wave function-important characteristics of wave function, Eigen values and Eigen functions of a particle confined to one dimensional infinite square well (potential well).

At the end of the Module 2, students will be able to:

- 1. **Explain** Quantum Mechanics to understand wave particle dualism (L2)
- 2. **Necessity** of quantum mechanics to explore the behavior of sub atomic particles (L3)
- 3. **Evaluate** the Eigen values and Eigen functions of a particle (L2)

MODULE-3	FREE ELECTRON THEORY OF METALS &	
	SEMICONDUCTORS	

10 HOURS

Classical free electron theory-assumptions, expression for electrical conductivity, merits and demerits; Quantum free electron theory of metals-expression for electrical conductivity; Fermi-Dirac distribution, Mathiesson rule, causes of electrical resistance in metals, Bloch's theorem (Qualitative), Kronig - Penny Model (Qualitative), Classification of solids into conductors, semiconductors and insulators based on energy band gap.

Semiconductors- Introduction – Intrinsic and Extrinsic semiconductors– Density of charge carriers, Electrical conductivity, Fermi level of intrinsic semiconductors ; Hall effect – Hall coefficient – Applications of Hall effect.

At the end of the Module 3, students will be able to:

- 1. **Demonstrate** the success of quantum free electron theory over classical free electron theory (L2)
- 2. **Examine** the probability of occupancy of an electron in an energy state at different temperatures (L3)
- 3. **Outline** the properties of n-type and p-type semiconductors and charge carriers (L2)
- 4. Identify the type of semiconductor using Hall effect (L2)

MODULE-4	SUPERCONDUCTORS AND NANOMATERIALS	10 HOURS
Superconductors- Intro	oduction – Properties of superconductors – Meissner effect – Ty	pe I and Type II
superconductors – BC	S theory – Josephson effects (AC and DC) – Applications of super	conductors.
Nanomaterials– Signif Optical ; Synthesis of	icance of nanoscale, Properties of nanomaterials: Physical, mech nanomaterials: Top-down-Ball Milling, Bottom-up –Chemical y	anical, Magnetic, apour deposition
;Applications of Nano	materials.	
At the end of the Modu	ile 4, students will be able to:	
1. Explain how e	electrical resistivity of solids changes with temperature (L2)	
2. Classify super	conductors based on Meissner's effect (L2)	
3. Explain Meiss	sner's effect, BCS theory & Josephson effect in superconductors (I	L2)
4. Identify the na	ano size dependent properties of nanomaterials (L2)	
5. Illustrate the	methods for the synthesis (L2)	
6. Apply the base	ic properties of nanomaterials in various Engineering branches (L3	3).
MODULE-5	I ASERS & OPTICAL FIRERS	9 HOURS

Lasers: Introduction, properties of lasers: monochromaticity, coherence, directionality, brightness; Spontaneous & stimulated emission of radiation, Einstein coefficients, Population inversion, Pumping methods, Types of lasers: Nd- YAG Laser, He–Ne Laser, Semiconductor laser; Applications.

Introduction to Optical Fibers-Total Internal Reflection-Critical angle of propagation-Acceptance angle-Numerical Aperture-Classification of optical fibers based on materials, modes and refractive index profile-Applications: fiber optic communication system and sensors.

At the end of the Module 5, students will be able to:

- 1. **Understand** the basic concepts of LASER light Sources (L2)
- 2. Apply the concepts to learn the types of lasers (L3)
- 3. Identify the Engineering applications of lasers (L2)
- 4. **Explain** the working principle of optical fibers (L2)
- 5. **Classify** optical fibers based on refractive index profile and mode of propagation (L2)

Total hours: 48 hours

Content beyond syllabus:

Types of magnetic materials and the applications.

Characterization of nano materials: (a) X-ray diffraction & Scanning electron microscope

Self-Study:

Contents to promote self-Learning:

S.No	Торіс	CO	Reference
1	Wave optics	CO1	https://nptel.ac.in/courses/122/107/122107035/
2	Introduction to quantum mechanics	CO2	https://nptel.ac.in/courses/115/101/115101107/
3	Free electron theory of metal & Semiconductors	CO3	https://nptel.ac.in/courses/113/106/113106040/ https://nptel.ac.in/courses/115/102/115102025/
4	Superconductors and nanomaterials	CO4	https://nptel.ac.in/courses/115/101/115101012/ https://nptel.ac.in/courses/118/104/118104008/
5	Lasers & optical fibers	CO5	https://nptel.ac.in/courses/115/102/115102124/ https://nptel.ac.in/courses/115/107/115107095/

Text Book(s):

- 1. M. N. Avadhanulu, P.G. Kshirsagar & TVS Arun Murthy" AText book of Engineering Physics"-S. Chand Publications, 11th Edition 2019.
- 2. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2012.
- 3. S.O.Pillai, "Solid State Physics", 8th edition, New Age International Publishers, 2018.

Reference Book(s):

- 1. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", Pearson Education, 2018
- 2. N. Subrahmanyam, BrijLal, A Textbook of Optics, S. Chand, New Delhi, 2015
- 3. Kittel, C. Introduction to Solid State Physics. Wiley, 2005.
- 4. K. Thyagarajan, Engineering Physics, McGraw-Hill Education (India) Pvt. Ltd, 2016.
- 5. Ajoy Ghatak, Optics, 5th Edition, McGraw Hill, 2012
- 6. O. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010.
- 7. William T. Silfvast, "Laser Fundamentals" 2nd edition, Cambridge University Press, 2004.
- 8. T. Pradeep, "A Text Book of Nanoscience and Nanotechnology", Tata Mc Graw Hill, 2003

Online Resources:

https://www.youtube.com/watch?v=-mNQW5OShMA https://www.youtube.com/watch?v=TwlRVDM6bKY https://www.youtube.com/watch?v=lH9SNnQCs54&t=58s https://www.youtube.com/watch?v=Usu9xZfabPM&t=154s

https://www.youtube.com/watch?v=x4Nr93ALNjo
https://www.youtube.com/watch?v=FL4QCymhYDA
https://www.youtube.com/watch?v=PvN-cwQXBDc
https://www.youtube.com/watch?v=RAqgxH_pS7Y
https://www.youtube.com/watch?v=AhLATP5rYPs
https://www.youtube.com/watch?v=CjAVfW_6juw
https://www.youtube.com/watch?v=h6FYs_AUCsQ
https://www.youtube.com/watch?v=3-PQ8H-AI9c
https://www.youtube.com/watch?v=3-PQ8H-AI9c
https://www.youtube.com/watch?v=PNEIByWIGNc
https://www.youtube.com/watch?v=1xWBPZnEJk8
https://www.youtube.com/watch?v=WgzynezPiyc
https://www.youtube.com/watch?v=T94BbyYyNpg
https://www.youtube.com/watch?v=aqazAcE19vw
Web Resources:
1. <u>http://www.sfu.ca/phys/141/1134/Lectures/SP%20Lecture%2029%20-</u>
%20Interference&Diffraction.pdf
2. <u>http://pages.physics.cornell.edu/~ajd268/Notes/QM-Notes.pdf</u>
3. <u>http://www-rjn.physics.ox.ac.uk/lectures/metalsnotes10.pdf</u>
4. <u>https://www.iare.ac.in/sites/default/files/lecture_notes/semiconductors%20lecture%20notes%20</u>
<u>%281%29_0.pdf</u>
5. <u>http://www.gpcet.ac.in/wp-content/uploads/2018/09/UNIT-5-EP-PDF.pdf</u>
6. <u>https://galgotiacollege.edu/assets/pdfs/study-material/notes-Physics.pdf</u>

NARAYANA ENGINEERING COLLEGE:GUDUR																	
I-B.Tech				BASI	CEL	ECTI	RICA	L CIR	CUI	TS (21	ES10	S1003) R2021					
Semester		Ho	ours / '	Week		To	otal	Cred	it		Μ	ax Ma					
]		Т		Р	h	nrs	C		CIE		SEE	TO	ГAL			
Ι		3	0		0	4	18	3		40		60	60 100				
Pre-requisite: Fundamental of mathematics and physics																	
Course O	Course Objectives:																
1.	To study the basics of circuit analysis.																
2.	To study the magnetic circuits.																
3.	The concepts of real power, reactive power, complex power, phase angle and																
	phase difference.																
4.	To u	nderst	and fi	requen	cy res	ponse	in ele	ectrical	l circ	uits.							
5.	To u	nderst	and th	ne con	cept of	f grap	hical	solutic	on to	electric	al net	work.					
6.	Ton	npart	know.	ledge	on solv	ving c	ircuit	equati	ions i	using n	etwor	k theor	rems.				
Course Outcomes: After successful completion of the course, the student will be able to:																	
CO 1	Solv	e vari	ous el	ectric	al netv	vorks	in pre	esence	of a	ctive ar	id pas	sive el	lements	.(BL-			
	3)																
CO 2	Und	erstan	d the	funda	mental	beha	aviour	of A	AC c	ircuits	and	solve	AC cir	cuit			
	prob	lems.	(BL-2)					-								
CO 3	Expl	lain th	e beha	aviour	of the	e circu	it at s	series	& pa	rallel re	esonar	nce of	circuit	& the			
	effe	ct of re	esonar	nce .(E	BL-2)												
CO 4	App	ly gra	ph the	ory to	formu	late n	etwor	k equa	ation	s.(BL-3	5)						
CO 5	Solv	e elec	trical	netwo	rks by	using	princ	iples o	of net	twork tl	heorer	n.(BL	-3)				
					C	<u>0-PO</u>) Map	ping					-				
CO	DO	DO	DO	DO		<u>P</u>	0	DO	DO	D O	DO	DO	PS PS	50 D00			
	PO 1	PO	PO 2	PO	PO 5	PO	PO 7	PO	PO	PO	PO 11	PO 12	PSO 1	PSO			
CO1		3	3	4	Э	U	/	0	7	10		3	3	<u> </u>			
CO2	3	3	3									5	2	-			
CO3	3	3	3										3	3			
CO4	3	3	3										2	3			
CO5	3	3	2										-				
~~~	5	5	-		L L orr		adiur	. 2 1	Li ala								

#### 1: Low, 2-Medium, 3- High

#### COURSE CONTENT

MODULE - 1INTRODUCTION TO ELECTRICAL &<br/>MAGNETIC CIRCUITS11hoursNetwork elements, R, L and C Parameters, Kirchhoff's Laws - Independent and Dependent<br/>sources-Source Transformation, Network Reduction Techniques, Faraday's Laws of<br/>Electromagnetic Induction, Concept of Self and Mutual Inductance, Dot Convention, Coefficient<br/>of Coupling, Composite Magnetic Circuit, MMF Calculations.11hours

At the end of Module 1, students will be able to:

1. Explain the network elements.(BL-2)

2. Understand the Voltage, Current, Power, Direct Current (DC), Alternating Current.(BL-2)

3. Explain the laws of electromagnetic induction.(BL-2)

4. Explain the Single phase AC circuits.(BL-2)

MODULE -2 SINGLE PHASE AC CIRCUITS

10hours



Introduction, R.M.S, Average Values and Form Factor for Different Periodic Wave Forms. Phase and Phase Difference, Steady State Analysis of R, L, C With series and parallel Sinusoidal Excitation.										
At the end of the Module 3, students will be able to:										
1. Understand the advantages of single phase AC system. (BL-2)										
2. Explain the complex and polar forms representation.(BL-2)										
3. Find the AC circuits in order to determine the voltage, current and power for the given problem. (BL-2)										
MODULE -3	<b>RESONANCE &amp; LOCUS DIAGRAMS</b>	10h	ours							
Resonance: Introduct	on, Series Resonance and parallel resonance, reso	onance free	quency, Q-							
factor, Bandwidth, Locus diagrams of RL, RC and RLC circuits and problems.										
At the end of the Mod	ule 4, students will be able to:									
1. Explain AC circuits	along with resonance and locus diagrams.(BL-2)									
2. Understand the effe	ct of resonance on series and parallel resonance circu	its.(BL-2)								
3. Explain the frequen	cy response for a resonant circuits.(BL-2)	-								
MODULE -4	NETWORK TOPOLOGY	9h	ours							
Definitions – Graph	- Tree, Incidence Matrix, Basic Cutset and Tiese	et matrices	for planar							
networks - Nodal A	nalysis, Mesh Analysis, Super Node and Super	Mesh A	nalysis for							
Dependent and Indep and Dual Networks.	endent Voltage and Current Sources and DC & AC	Excitation	is - Duality							
At the end of the Mod	ule 5, students will be able to:									
1. Understan	d the overview of topology for a given network. (B	L-2)								
2. Find the g	aph for the given electrical network. (BL-2)									
3. Apply grap	h theory to solve network equations. (BL-3)									
MODULE-5	NETWORK THEOREMS	08hou	rs							
Superposition theorem	. Compensation theorem. Thevenin's theorem. North	on's theore	m.							
Maximum power tran	sfer theorem, Tellegen's theorem, Millman's theorem	n, Reciproc	ity							
theorem; Application	of network theorems in solving DC and AC circuits.	· •	•							
At the end of the Mod	ule 6, students will be able to:									
1. Understand the way of approaching to solve for a given network. (BL-2)										
2. Solve theorem	s for finding the solutions of network problem.(BL-3)	)								
3. Explain the ap	plication of network theorems.(BL-2)									
	Tot	al hours:	48hours							

# **Content beyond syllabus:**

- 1. Three Phase circuits and its Importance in Electrical Engineering.
- 2. Real time applications of network theorems.

## Self-Study:

Contents to promote self-Learning:

SNO	Topic         Reference								
1	Introduction to the electrical & magnetic circuits	https://nptel.ac.in/courses/117/106/117106108/							
2	Single phase AC circuit	https://nptel.ac.in/courses/108/105/108105053/							
3	Locus diagram and resonance	https://nptel.ac.in/courses/108/105/108105112/							
4	Analysis of electrical circuit and Graph theory	https://nptel.ac.in/courses/108/105/108105159/							

Narayana Engineering College :: Gudur (Autonomous)



5	Network theorem	https://nptel.ac.in/courses/117/106/117106108/

#### Text Book(s):

1. A Sudhakar and Shyam Mohan S P, "Circuits and Networks: Analysis and Synthesis", TMH, 5th Edition, New Delhi, 2015.

2. Ravish R., Network Analysis and Synthesis, 2/e, McGraw-Hill, 2015

#### **Reference Book(s):**

1. S.Sivanagaraju, G.Kishore & C.Srinivasa Rao, "Electrical Circuit Analysis", Cengage Learning, 1st Edition, 2010.

2. A. Chakrabarti : Circuit Theory (Analysis and Synthesis), Dhanpat Rai &Co

3. Joseph A. Edminister and Mahmood Nahvi, "Electric Circuits Schaum's Outline Series", 6th Edition, Tata McGraw-Hill, 2014, New Delhi.

4. Electric Circuits by N.Sreenivasulu, REEM Publications

# **Online Resources / Web Reference:**

1. <u>https://nptel.ac.in/courses/108/105/108105159/</u>

2. <u>https://nptel.ac.in/courses/108/102/108102042/</u>

3. <u>https://nptel.ac.in/content/storage2/courses/108105053/pdf/L-</u>

21(TB)(ET)%20((EE)NPTEL).pdf

4. https://en.wikibooks.org/wiki/Circuit_Theory

5.<u>http://www.mathtutordvd.com/products/Engineering-Circuit-Analysis-Volume-1.cfm</u>

6.<u>http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-</u>

andelectronics-spring-2007/video-lectures/lecture-2/

7. <u>http://www.facstaff.bucknell.edu/mastascu/elessonsHTML/Circuit/Circuit1.html</u>

8. <u>https://opencourses.emu.edu.tr/course/view.php?id=3</u>



	NARAYANA ENGINEERING COLLEGE::GUDUR													
	I	PROBLEM SOLVING AND PROGRAMMING R202												
Semester	Н	ours / We	ek	Total	Credit		Max Marks							
	L	Т	Р	hrs	С	CIE	TOTAL							
I 3 0 0 48 3 30 70														
Pre-requisite: Mathematics Knowledge, Analytical and Logical skills														
Course Objectives:														
1. To ı	understand	various ste	ps in Prog	gram deve	lopment.									
2. To u	understand t	the basic c	oncepts ir	n C Progra	mming La	inguage.								
3. To l	earn how to	write mo	dular and	readable (	C Program	s.								
4. To l	earn the syn	ntax and so	emantics of	of a C Prog	gramming	language.								
5. To l	earn structu	red progra	amming a	pproach fo	or problem	solving.								
Course O	utcomes: A	After succe	essful con	npletion o	of the cour	se, Stude	nt will be	able to:						
CO 1	Identify	methods to	o solve a p	oroblem th	rough con	nputer pro	gramming	g. (BL - 3)						
CO 2	Understa	nd the use	of basic of	elements o	of C langua	age. (BL -	2)							
CO 3	<b>CO 3</b> Understand the usage of various control statements and the modular approach													
	for solvin	ng the prol	olems. (Bl	L - 2)										
CO 4	Apply th	e Arrays a	nd Pointe	rs for solv	ing proble	ems. (BL -	3)							
CO 5	Explain	User-Defin	ned Data 7	Types and	Files. (BL	2)								

	CO-PO Mapping														
	РО													PSO	
СО	PO 1	PO 2	PO3	PO4	PO5	PO6	PO 7	PO 8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	
CO1	3	3											1		
CO2	1	2	1										1		
CO3	1	2	3	2	2							2	2	2	
CO4	3	3	2	2								1	2		
CO5	2	2	2	2								1	2		
			•		1: Lov	w, 2-N	/lediu	m, 3-1	High					•	

<b>COURSE</b> (	CONTENT
-----------------	---------

MODULE – 1 Fundamentals of Computers and Programming													
Introduction to Programming, Algorithms and Flowcharts: Programs and Programming,													
Programming	languages,	Compiler,	Interpreter,	Structured	Programming	Concept,							
Algorithms, Flo	wcharts, Ho	w to Develo	p a Program.										

**Fundamental Algorithms:** Exchanging the values of Two Variables, Counting, Summation of a set of numbers, Factorial computation, Generation of the Fibonacci Sequence, Reversing the digits of an integer.



At the end of the Module 1, students will be able to:

- 1. Solve problems using language independent notations. (BL 3)
- 2. Understand the compilers and interpreters. (BL 2)
- 3. Understand Structured Programming. (BL 2)

5. Onderstand Structured Programming. (DE 2)									
4. Develop algorithms and flowcharts for problems. (BL - 3)									
MODULE -2	MODULE -2Basic Elements of C9 H								
Basics of C: Introduction, Character Set, Structure of a C Program, A Simple C Program,									
Variables, Data Types and Sizes, Declaration, How does The Computer Store Data in									
Memory, Identifiers, Keywords, Constants, Assignment, and Initialization.									
Operators and Expressions: Arithmetic Operators, Relational Operators, Logical									
Operators, Bitwise Operators, Conditional Operator, Comma operator, sizeof operator,									
Expressions, L values and R values, Expression Evaluation- Precedence and Associativity,									
Type Conversion.									
At the end of the	Module 2, students will be able to:								
1. Understand	the basic structure of a program in C. (BL - 2)								
2. Understand	l tokens in C language. (BL - 2)								
3. Illustrate th	ne working of expressions. (BL - 2)								
4. Understand	4. Understand the precedence and Associativity rules of operators. (BL - 2)								
5. Understand the rules of type conversion. (BL - 2)									
MODULE-3	Data Input / Output, Control Statements and	11 H							
	Functions								
Input and Outpu	t: Basic Screen and Keyboard I/O in C, Formatted Input	and Output,							
Control Statement	and Output Functions	alaa alaa if							
Loddor quitab Lo	as: Selection Statements - II, Nested II, II-else, Nested II-	else, else-ll							
Statements goto I	break continue return	liconunional							
Functions Introdu	uction Using Functions Passing Arguments to a Function V	Vorking with							
Function Scope	and Extent Recursion The C Preprocessor Storage class	vorking with ses Multifile							
nrograms	and Extent, Recuision, The C Treprocessor, Storage class								
At the end of the M	Iodule 3, students will be able to:								
1. Explain the	Formatted and Unformatted I/O functions. (BL - 2)								
2. Understand	Selection Statements. (BL - 2)								
3. Understand	Looping Statements. (BL - 2)								
4. Explain Unconditional Statements. (BL - 2)									
5. Understand the basic concept of functions. (BL - 2)									
6. Understand concept of Recursion and Preprocessor. (BL - 2)									
7. Explain sto	rage specifiers. (BL - 2)								
MODULE-4 Arrays and Pointers 10 H									
Arrays and Str	ings: Introduction, One-Dimensional Array, Multidimensio	onal Arrays.							

**Arrays and Strings:** Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Arrays to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulation, String Manipulation, Arrays of Strings.

**Pointers:** Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Narayana Engineering College :: Gudur (Autonomous)



Comm	and line arguments, Dynan	nic Memory Management.								
At the e	end of the Module 4, studen	ts will be able to:								
1.	Understand the concept of A	Arrays. (BL - 2)								
2.	2. Understand the concept of pointers. (BL - 2)									
3.	Explain Dynamic Memory	Management. (BL -2)								
MO	DULE-5 Use	r-Defined Data Types and Files	9 H							
Structu	ires and Unions: Basics of	of Structures, Nesting of Structures, Arrays	of Structures,							
Structur	res and Pointers, Structures	s and Functions, Self-Referential Structures	, Unions, Bit-							
fields, H	Enumerations, typedef.									
Files: In	ntroduction, Using Files in	C, Working with Text Files, Random Acces	sses to Files of							
Records	5.									
At the e	end of the Module 5, studen	ts will be able to:								
1.	Explain user defined data ty	ypes. (BL - 2)								
2.	Understand the concept of	Self-Referential Structures. (BL - 2)								
3.	Understand the working of	files. (BL - 2)								
		Total hours: 4	8 HOURS							
Conten	t Beyond Syllabus:									
1.	Analysis of Algorithms									
2.	Binary Files	Lists								
3. Salf St	variable Length Argument	LISTS								
Conte	uuy: ents to promote self-Learn	ing.								
SNo	Module	Reference								
5110	Withduc	https://pptol.og.in/opurpog/106/106/106106	107/							
		<u>Intps://inpter.ac.in/courses/100/100/100/00000</u>	12//							
	Fundamentals of	https://nptel.ac.in/courses/106/105/106105	171/							
1	Computers and	[Week 1 - Lec 1 To 4 ]	<u>1 / 1/</u>							
	Programming									
		https://nptel.ac.in/courses/106/105/106105	171/							
		[ Week 1 - Lec 10]								
		https://nptel.ac.in/courses/106/105/106105	<u>171/</u>							
2	Basic Flements of C	[Week 2 - Lecture 7 To 10]								
2	Dusie Elements of C	https://nptel.ac.in/courses/106/105/106105	171/							
		[Week 3 - Lec 11 To 14]								
		https://nptel.ac.in/courses/106/106/106106	127/							
		[Lec 12]	1							
		<u>https://npte1.ac.in/courses/100/100/100106127/</u>	<u>/</u>							
		https://nptel.ac.in/courses/106/106/106106127	/							
		[Lec 14]	-							



3	Data Input / Output, Control Statements and Functions	https://nptel.ac.in/courses/106/106/106106127/ [Lec 20] https://nptel.ac.in/courses/106/105/106105171/ [Week 4 - Lec 25] https://nptel.ac.in/courses/106/105/106105171/ Week 4 - Lec 26 To 28] [Week 5 - Lec 21 To 25] https://nptel.ac.in/courses/106/106106127/ [Lec 26 & 27]					
4	Arrays and Pointers	https://nptel.ac.in/courses/106/105/106105171/ [ Week 5 - Lec 30 To 32] [ Week 6 - Lec 32 To 34] [ Week 6 - Lec 35,36 ] https://nptel.ac.in/courses/106/106106127/ [ Lec 37,38 ]					
5	User-Defined Data Types and Files	https://nptel.ac.in/courses/106/105/106105171/ [Week 11 - Lec 40,41 ] https://nptel.ac.in/courses/106/106/106106127/ [Lec 43,44 ] https://nptel.ac.in/courses/106/106/106106127/ [Lec 47 ]					
Text l	Book(s):	· · · · · · · · · · · · · · · · · · ·					
1.	Pradip Dey, and Manas Ghe	osh, "Programming in C", 2018, Oxford University Press.					
2.	Byron Gottfried, Schaum's	Outline of Programming with C, 4 th Edition, 2018,					
	McGraw-Hill						
Refer	ence Books :						
1.	Brian W. Kernighan, and 2 nd Edition, Pearson.	I Dennis M. Ritchie, "The C Programming Language",					
2.	Ajay Mittal, Programming	g in C: A Practical Approach , 3/e, Pearson Publication					
3.	SCHILDT and HERBERT 2020	Γ, C: The Complete Reference,4th Edition, McGraw Hill,					
4.	SOMASHEKARA, M. T. with C,2 nd Edition, PHI L	, GURU, D. S., MANJUNATHA, K. S., Problem Solving earning, 2018					
5.	Paul Deitel, Deitel& Har Education	vey Deitel, C How to Program,6th Edition, Pearson					
6.	Jeri R. Hanly, Elliot B. K	Coffman, Ashok Kamthane and A.Ananda Rao,					
	Programming in C and D	Data Structures, 1st Edition, Pearson Education, 2010.					
7.	H.Cheng, C for Engineer	s and Scientists, Mc.Graw-Hill International Edition					
	Education / PHI, 2009						
8.	Yashavant P. Kanetkar, I	Let us C, 16th Edition, BBP Publications, Delhi, 2017.					
9.	R.G. Dromey, "How to S	Solve it by Computer". Pearson,2014.					
10	. Anita Goel, Computer Fu	undamentals, Pearson Publication, 2010.					



NARAYANA ENGINEERING COLLEGE:GUDUR														
I-B.Tech	Applied Physics lab (21PH1501)R2021													1
Semester		Ho	ours / V	Veek		Т	otal	Credi	t		Ν	lax Ma	ırks	
	L	4	Т		Р	ł	nrs	С		CIE		SEE	ТО	TAL
I	0		0		2		36	1.5	5	40		60	1	00
Pre-requisi	te: Ni	il												
Course Obj	ective	es:												
1.	To	prović	le stud	ent to	learn a	about	some	import	ant e	kperime	ntal te	echniqu	ues in p	hysics
	with	know	ledge i	n theo	retical	aspec	ts so t	hat the	ey car	n excel	in that	t partic	cular fie	ld. To
	prepare students for performing requirement analysis and design of variety of													
applications.														
2. To enable the students to understand the concepts of interference and diffraction and														
	their applications.													
3.	3. To educate students to recognize the applications of laser in finding the wavelength, slit													
width and its role in diffraction studies														
4. To make the students to understand the important parameters of optical fibres and metals														
Course Outcomes: After successful completion of the course, the student will be able to:														
CO 1	learn	impo	ortant c	concep	ts of pl	hysics	throug	gh invo	olvem	ent in tl	ne exp	erimer	nts by ap	oplying
	theor	retical	knowl	edge.										
CO 2	unde	rstand	the c	oncept	s of int	erfere	nce an	d diffr	actior	and the	eir app	olicatio	ns.	
CO 3	recog	gnize t	he app	olicatio	ns of l	aser ir	n findi	ng the	wav	elength,	slit v	width	and its i	role in
	diffra	action	studies	5										
CO 4	unde	rstand	the in	nportai	nt para	meters	s of op	tical fil	bres a	nd meta	ıls			
					(	СО-РО	Map	oing						
СО				-		Р	0	-					P	50
	PO	PO	PO	PO	РО	PO	РО	PO	PO	PO	РО	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1												
CO2	2	1												
CO3	2	1				1								
CO4	2	1			4.1.	1		2						
					1: LOV	w, 2-IV	ledium	i, 3- Hi	gn					
					~~~									
					0	UKSE	CONT	IN I						

COURSE CONTENT	СО
Task -1 Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall effect.	
The objective :To determine a) sign of the charge carriers, b) charge carrier concentration, c) mobility of the charge carriers of a given semiconductor	CO 1
Task - 2 To determine the resistivity of semiconductor by Four probe method	
Objective: To determine the resistivity of semiconductor by Four probe method	CO 1
Task -3Determine the energy gap of a given semiconductor diode.	
Objective:To plot characteristics between reverse saturation current and 103 /T and find out the approximate value of Energy Band Gap in PN junction diode	CO 1

Narayana Engineering College :: Gudur (Autonomous)

TASK -4 Measurement of radius of curvature of a lens by Newton's rings method.					
Objective: To determine the wavelength of sodium light by Newton's Ring method	CO 2				
The key idea behind Newtons ring experiment is the thin film formation between a plane-					
convex lens and a glass plate. Due to this thin film of air a path difference occurs in the waves					
which reflect from the lower surface of the lens and the top surface of the glass plate. As a					
result of it, they superimpose and develop the interference pattern.					
TASK -5. Determine the thickness of the wire using wedge shape method					
Objective: To calculate the thickness of a thin wire by forming interference fringes using an air	CO 2				
wedge arrangement.					
The key idea behind this experiment is the formation of thin wedge shaped film between two plane					
glass plates. Due to this thin film of air, a path difference occurs between waves reflected from top					
and bottom surface of the film. On superimposition of these waves an interference pattern					
containing a number of straight line fringes will be produced					
TASK-6 Determination of wavelength by plane diffraction grating normal incidence method					
Objectives: 1.To understand the types of diffraction	CO 2				
2. To familiarize with the principle of diffraction in plane transmission grating					
3. To know the procedure for standardization of the grating					
4.To determine the wavelengths of prominent spectral lines of mercury spectrum.					
An arrangement, which is equivalents in its action to a large number of parallel slits of same width					
separated by equal opaque spaces is called diffraction grating. It is constructed by ruling fine					
equidistant parallel lines on an optically plane glass plate with the help of a sharp diamond point.					
TASK -7 Dispersive power of a diffraction grating					
objective: To determine Dispersive power of a diffraction grating	CO 2				
When white light passes through a grating, different wavelengths undergo different angles of					
diffraction. Hence white light split up into different colours and diffraction spectra of different					
orders will be produced. The angular dispersion or dispersive power of a grating is defined as the					
rate of change of angle of diffraction with the change of wavelength in a particular order of the					
spectrum.					
TASK -8 Determination of wavelength of LASER light using diffraction grating					
Objectives :1. To determine the concept of diffraction	CO 3				
2. To determine the wavelength of the given Laser source.					
TASK -9 . Laser: Diffraction at a single slit					
Objective:Determination of width of a given single slit using laser diffraction method	CO 3				
Laser beam has high monochromaticity, coherence and directionality. Hence it forms a clear					
diffraction pattern and we can measure width of a single slit accurately.					
TASK -10 To determine the numerical aperture and acceptance angle of a given optical fibre					
Ubjective: To determine the numerical aperture and acceptance angle of a given optical fiber.	CO4				
In optical fibres light travel by multiple total internal reflections. Numerical aperture represents					
light gathering powerot optical fibre. Acceptance angle represents maximum limiting angle at one					
end of optical fibre for the light ray to travel by multiple total internal reflections through the core					
region of theribre.					
1. Optical libers may be used for accurate sensing of physical parameters and fields like pressure,					
temperature and liquid level.					

2. For m	2. For military applications like fiber optic hydrophones for submarine and underwater sea							
application and gyroscopes for applications in ships, missiles and aircrafts.								
Additiona	al Experiments:							
TASK -11	Laser: Diffraction at a double slit							
Objective	:Determination of width of a given double slit u	sing laser diffraction method. CO 3						
With this double sli	experiment we can demonstrate diffraction nat t accurately.	ure of lasers and measure width of a						
TASK -12	: Determination of Fermi energy of a metal.							
Objective: To determine Fermi energy of a metal.								
Fermi ene	ergy represents highest energy level occupied by	the electron at 0 K in a metal.						
Virtual la	b: 1) Laser beam divergence and spot size	-1						
Michelson	n's Interferometer-Wavelength of laser beam	<u>-1</u>						
https://vla	b amrita edu/?sub=1&brch=189∼=1106&cn	t=1						
Anderson	's Bridge							
https://vlab.amrita.edu/?sub=1&brch=192∼=859&cnt=1								
Self-Stud	y:							
Conten	ts to promote self-Learning:							
SNO	Торіс	Reference						
1	Newton rings	https://youtu.be/PU-SeNfIRcs						

1	Newton rings	https://youtu.be/PU-SeNfIRcs
2	Diffraction grating experiment – Wavelength of mercury spectrum	https://youtu.be/N0lxwqANsd4
3	Experiment – Laser Grating-Determination of Wavelength of Given Laser Source	https://youtu.be/764Fr0mnOrQ

Text Book(s):

C. L. Arora, "Practical Physics", S. Chand & Co., New Delhi, 3rd Edition, 2012.
 Vijay Kumar, Dr. T. Radhakrishna, "Practical Physics for Engineering Students", S M Enterprises, 2nd Edition, 2014.

Reference Book(s):

S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.

C.H. Bernard and C.D. Epp, John Wiley and Sons, "Laboratory Experiments in College Physics" Inc., New York, 1995.

Dr.Ruby Das, C.S.Robinson, Rajesh Kumar and Prasanth Kumar "A text book of Engineering Physics Practical", 1st edition, Sahu University Science Press, 2010.

4.Jayaraman, "Engineering Physics Laboratory Manual", 1st edition, Pearson Education, 2014.

Web Resources:

1. <u>https://www.scribd.com/doc/143091652/ENGINEERING-PHYSICS-LAB</u>.

2. <u>https://www3.nd.edu/~wzech/LabManual_0907c.pdf.</u>

3.<u>https://www.morebooks.de/store/gb/book/engineering-physics-lab-manual/isbn/978-3-330-34402.</u>

NARAYANA ENGINEERING COLLEGE:GUDUR									
I-B.Tech.	I-B.Tech. BASIC ELECTRICAL CIRCUIT LAB (21ES1506) R2021								
Semester	Hours / Week		ek	Total	Credit		Max Mar	⁻ ks	
	L	Т	Р	hrs	C	CIE	SEE	TOTAL	
I	0	0	2	32	1	40	60	100	
Pre-requisi	te: Netwo	^r k Analysis							
Course Obj	ectives:								
1. Fundame	entals of Oh	m's law, Kir	rchhoff's cu	irrent and v	oltage laws	s and its pra	actical impl	ementation.	
2. Measure	ment of vol	tage, curre	nt, power a	nd impeda	nce of any o	circuit.			
3. Analysis o	of a given ci	rcuit deper	nding on typ	pes of elem	ents.				
Course Out	comes: Aft	er success	ful comple	etion of th	e course, th	ne student	will be abl	e to:	
CO 1	Apply the KCL and KVL for circuit analysis and verify the results theoretically (BL= 3)								
<u> </u>	Experimentally determine self inductance mutual inductance and coefficient								
002	f_{A} solution of coupling (PL - 2)								
	or coupling.(BL=3)								
CO 3	Practically determine band width, Q-factor and verify with theoretical values.								
	(BL=3)								
CO 4	Able to draw locus diagrams, waveforms and phasor diagrams for lagging and								
	leading networks.(BL-2)								
CO 5	Apply suitable theorems for the given Electrical circuit and verify with								
	theoretic	theoretical values.(BL=3)							
	•								

CO-PO Mapping														
со		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	РО	РО	PO	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	1	1		1	2		1		2	2	2
CO2	2	2	2	1	1		1	2		1		2	2	2
CO3	2	2	2	1	1		1	2		1		2	2	2
CO4	2	2	2	1	1		1	2		1		2	2	2
CO5	2	2	1				1						2	3
1: Low, 2-Medium, 3- High														

COURSE CONTENT	СО
Task 1 – Verification of Kirchhoff's laws	
Objective:	CO 1
To verify the KCL and KVL for a given circuit	
TASK-2 Determination of Self, Mutual Inductances and Coefficient of Coupling	
Objective:	CO 1
To determine the self and mutual inductances and coefficient of coupling for two inductive coils.	
TASK-3 Measurement of current in various branches of RLC series and draw the phasor	CO 2
diagram.	
Objective: To Analyze the series and parallel RLC circuits	
TASK-4 Locus Diagrams of RL, RC Series Circuit.	

Narayana Engineering College :: Gudur (Autonomous)

Objective:	CO 2
To Plot the current locus diagrams for Series RL,RC circuit.	
TASK-5 Frequency response of series & parallel resonance circuit with analysis and design	
Objective:	CO 3
To determine resonant frequency, band width and Q-factor for series & parallel RLC circuits	
TASK-6 Verification of Thevenin's and Norton's theorems	
Objective:	CO 4
To verify the Thevinins and Norton's Theorem	
TASK-7 Verification of Reciprocity and Millman's Theorems	
Objective:	CO 4
To verify the reciprocity and Millman's Theorems	
TASK-8 Verification of Superposition Theorem	
Objective:	CO 4
To verify the superposition theorem	
TASK-9 Verification of Maximum Power Transfer Theorem	
Objective:	CO 4
To verify the Maximum power transfer theorem	
TASK-10 Verification of compensation Theorem	
Objective:	CO 4
To verify the compensation theorem	

Additi	onal Experiments:					
TASK-:	${f l1}$ Verification of mesh & nodal analysis using digital simulation.	CO 1				
Object	ive:					
To ver	ify mesh analysis using digital simulation.					
TASK-:	12 Verification of different theorems using digital simulation.	CO 1				
Object	ive:					
To ver	ify different theorems using digital simulation					
Virtua	l Labs:					
1.	1. Parallel RC Circuits					
2.	2. Parallel LC Circuits					
3.	3. Thevenin's theorem					
4.	Series RL Circuits					
5.	5. Norton's Theorem					
6.	6. Series LCR Circuit					
Self-St	tudy:					
Cont	ents to promote self-Learning:					

SNO	Торіс	со	Reference
1	Thevinins and nortons	CO1	https://www.youtube.com/watch?v=7JfoDFk61o8
2	Series Resonance in RLC Circuit	CO2	https://www.youtube.com/watch?v=YLGrugmDvc0
3	Phasor Diagram of RL, RC and RLC Circuits	CO3	https://www.youtube.com/watch?v=HaFrY0qQ-NU

Narayana Engineering College :: Gudur (Autonomous)

Text Book(s):

1. A Chakrabarthy, "Electric Circuits", Dhanpat Rai & Sons, 6th Edition, 2010.

2. A Sudhakar, Shyammohan S Palli, "Circuits & Networks", Tata McGraw-Hill, 4th Edition, 2010

Reference Book(s):

1. Willam Hayt.jr, Jack E.kemmerly,Steven M.Durbin, "Engineering Circuit analysis" Tata McGraw-Hill, 8th Edition2012

2. Rudrapratap, "Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers", Oxford University Press, 1 st Edition, 1999.

Web References:

- 1. https://www.ee.iitkgp.ac.in/
- 2. http://www.vlab.co.in/lab_ready_for_use.php
- 3. <u>http://vlab.amrita.edu/?sub=1&brch=75</u>
NECR B.TECH 21

		NARAYA	NA ENGI	NEERING	COLLEG	E:GUDU	R					
I- B.Tec	h	ENGI	NEERING	& ITWOR	RK SHOP ((21ES150	5)	R2021				
PART – A ENGINEERING WORK SHOP												
Semester	Н	ours / Wee	ek		Credits	Max	Max Marks					
	L	Т	Р	Total hrs	С	CIE	SEE	TOTAL				
Ι	0	0 0 3 48 1.5 40 60 100										
Pre-re	equisite: Basic	mathema	tics and e	lectronic c	levices.							
Course (Objectives:											
1.	To know basic	workshop	p processe	es and ado	pt safety p	ractices	while we	orking with				
	various tools ar	nd equipm	ents									
2.	2. To identify, select and use various marking, measuring, holding, striking and cutting											
2	tools & equipments.											
3.	To know abou	t the inter	nal parts	of a comp	outer, assei	nbling a	compute	er from the				
1	To goin knowl	g a compu	t the use	by installi	$\frac{1}{1}$	rating sy	stem	randahaata				
4.	To gain known	euge aboi	ut the usa	ge of tool	s like wo	ru proces	ssors, Sp	oreausneets,				
5	To learn about	Networki	ng of com	mutare and	l usa Intar	nat facili	ty for Br	oweing and				
5.	Searching	INCLWOIKI	ing of con	iputers and	i use inter	liet lacili	ty for Bi	owsnig and				
Course (Dutcomes : After	er success	ful comp	letion of th	ne course,	the stude	ent will	be able to:				
CO1	Understand t	he safety a	aspects in	using the t	ools and e	quipment	ts.(BL-2)					
CO2	Apply tools for	or making	models in	respective	e trades of	engineer	ing work	shop.(BL-3)				
CO3	Apply basic e	lectrical e	ngineering	g knowledg	ge to make	s imple h	ousewiri	ng circuits				
	And check the	eir function	nality.(BL	-3)								
CO4	Understand t	o disassen	nble and a	ssemble a	Personal C	Computer	and prep	pare the				
	Computer read	dy to use(]	BL-2)									
CO5	Apply knowled (BL-3)	edge to Int	erconnect	two or mo	ore comput	ers for in	formatio	n sharing				

	CO-PO Mapping													
		PO										PSO		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2				3								1	3
CO2	2				3								1	3
CO3	2				3								1	3
CO4	2				3								1	3
CO5	2				3								1	3
					1: Lov	v, 2-M	lediun	n, 3- H	ligh					

COURSE CONTENT (TRADES FOR PRACTICE)

Trade -1 Carpentry (6 H)

Familiaritywithdifferenttypesofwoodsandtoolsusedinwoodworkingandmakefollowingjointsfromoutof 300x40x25 mms of two od stock.

a) Half-Lapjoint.

b) Mortise and Tenonjoint

Trade-2 Fitting (6 H)

i.]Familiarity with different types of tools used in fitting and do the fitting exercises out of $80 \times 50 \times 5 \text{ mm}$ M.S. stock

a) V-fit b) Dovetail fit

Trade – 3 Sheet Metal Work (6 H)

Familiarity with different types of tools used in sheet metal working, Developments of following sheet
metal job from out of 22 or 20 guage G.I. sheet
a) Tapered tray b) Conical funnel
Trade – 4 Electrical House Wiring (6 H)
Familiarities with different types of basic electrical circuits and make the following electrical
connections
a) Two lamps in series
b) Two way switch
c) Tube light
d) Two lamps in parallel with 3 pin plug and switches
Trade 5 – Welding
Familiarity with different types of tools used in welding and do the following welding exercises
1. Single V butt joint
2. Lan joint
Text Deele(a)
I. Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjar Roy S.K. "Elements of
WorkshopTechnology"Vol-12008&Vol-112010MediaPromoters&Publishers
Pvt.Limited,Mumbai.
2. KalpakijanS.andStevenS.Schmid, "Manufacturing Engineering and Technology" 4 th Edition.
Pearson Education IndiaEdition 2002
2 D Kannish 0 K L Name of We halve a supervised 12 Ord E = 1 Ord Ord Ord E = 1 Ord
3. P. Kannalan&K. L. Narayana "worksnop manual" ²¹⁰ Ed., Scitech publications
Pvt.Ltd.,Hyderabad,2008.
Reference Book(s):
2. Gowri P., Hariharan and Suresh Babu A., "Manufacturing Technology-I", Pearson
Education2008.
WebResources:
1. https://www.muet.edu.pk/sites/default/files/images/users/41/Workshop%20Intro.pdf

2. http://ecoursesonline.iasri.res.in/mod/page/view.php?id=98826

PART-B IT WORKSHOP LAB

Course Objectives:

- 1. To provide Technical training on Productivity tools like Word processors, Spreadsheets, Presentations.
- 2. To make the students know about the internal parts of a computer, assembling, installing the operating system.
- 3. To teach connecting two or more computers.

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1	Understand functionalities of a computer and operating system.	(BL-2)
CO 2	Practice Word processors, Presentation and Spreadsheet tool.	(BL-2)
CO 3	Connect computer using wired and wireless connections.	(BL-2)

CO-PO Mapping														
		PO											PS	60
	PO	O PO												
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1													
CO2	1													
CO3	1													
				1	1: Low	1. 2-M	[ediun	n. 3- F	ligh					

COURSE CONTENT	СО
Task-1 Learn about Computer (4H)	
Identify the internal parts of a computer and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.	CO 1
Task -2 Assembling a Computer (4H)	
Disassemble and assemble the PC back to working condition. Troubleshoot the computer and identify working and non-working parts. Identify the problem correctly by various methods available (eg: beeps). Record the process of assembling and trouble-shooting a computer.	CO 1
Task-3 Install Operating system (2H)	CO 1
Install Linux, any other operating system (including proprietary software) and make the system dual boot or multi boot. Record the entire installation process.	
TASK-4 Operating system features (2H)	CO 1
Record various features that are supported by the operating system(s) installed. Submit a report on it. Access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Install new application software and record the installation process.	
TASK-5 Word Processor (6H)	CO 2
Create documents using the word processor tool. Tasks to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the colour, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Submit a report of the word processor considered.	

Narayana Engineering College :: Gudur (Autonomous)

Create documents using the word processor tool. Mail Merge in word processor for	
creating appointment orders for 10 employee records in excel.	
TASK-6 Spreadsheet (4H)	CO 2
To create, open, save the spreadsheet and format them as per the requirement. Some	
of the tasks to be practiced are Managing the worksheet environment, creating cell	
data, inserting and deleting cell data, format cells, adjust the cell size, applying	
formulas and functions, preparing charts, sorting cells, working with pivot tables	
and charts. Submit a report of the Spreadsheet application considered.	
TASK-7 Presentations (6H)	CO 2
To create, open, save and run the presentations, Select the style for slides, format	
the slides with different fonts, colors, create charts and tables, insert and delete text,	
graphics and animations, bulleting and numbering, hyperlink, set the time for slide	
show, Record slide show. Submit a report of the Presentation tool considered.	
TASK-8 Wired network & Wireless network (4H)	CO 3
Select a LAN cable, Identify the wires in the cable, Define the purpose of each wire,	
Study the RJ45 connecter, Use crimping tool to fix the cable to the connecter, Test	
the cable using LAN tester, Connect two or more computers using cross and straight	

Additional Experiments:	
TASK -1 IoT	CO 3
Raspberry Pi Study the architecture of Raspberry pi, configure software, Install SD card. Connect the cables Install Rasphan (or any other) operating system	
Configure Wi-Fi, Remotely connect to your Raspberry Pi.	
TASK -2 OUTLOOK, MACROS	CO 3
Practice the following tasks and submit report	
A. Configure outlook and access mails.	
B. Create Macros in word and spreadsheet tools	

Text Book(s):

1. B.Govindarajulu, "IBM PC and Clones Hardware Trouble shooting and Maintenance",2nd edition, Tata McGraw-Hill, 2002

2. "MOS study guide for word, Excel, Powerpoint& Outlook Exams", Joan Lambert, Joyce Cox, PHI.

3. "Introduction to Information Technology", ITL Education Solutions limited, Pearson Education.

Reference Book(s):

1. Rusen, "Networking your computers and devices", PHI

2. Bigelows, "Trouble shooting, Maintaining & Repairing PCs", TMH.

On-line/Web Resources:

https://turbofuture.com/computers/Dissassembling-and-Assembling-the-computer-system https://www.instructables.com/id/Disassemble-a-Computer/

https://www.windowscentral.com/how-do-clean-installation-windows-10

https://www.tutorialspoint.com/ms_excel_online_training/index.asp

https://www.raspberrypi.org

	NARAYANA ENGINEERING COLLEGE::GUDUR											
I-B.Tech	B.TechProblem Solving and Programming Lab (21ES1501)R2021											
Semester	Н	ours / Wee	ek	Total	Credit	Max Marks						
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
Ι	0	0	3	48	1.5	40	60	100				
Pre-requ	isite: Mat	hematics	Knowled	ge, Analy	rtical & L	ogical Sk	ills					
Course C	bjectives:											
1. To	work with	the comp	ound data	types								
2. To	explore dy	namic me	mory allo	ocation co	ncepts							
3. To	design the	flowchar	t and algo	rithm for	real world	problems						
4. To	write C pr	ograms fo	r real woi	ld problei	ns using s	imple and	compoun	d data types				
5. To	employee	good pr	ogrammiı	ng style,	standards	and prac	tices duri	ng program				
de	velopment											
Course C	utcomes:	After suc	cessful co	ompletion	of the co	urse, Stud	dent will b	be able to:				
CO1 T	anslate alg	orithms in	ito progra	ms (In C	language)	(BL - 2)						
CO 2 C	ode and de	bug progra	ams in C _l	program la	anguage u	sing vario	us constru	cts.(BL - 3)				
CO3 So	olve the pro	blems and	d impleme	ent algorit	hms in C.	(BL - 3)						

CO 4 Make use of different data types to handle the real time data (BL - 3)

	CO-PO Mapping													
		РО										P	PSO	
~~~	PO1	PO2	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO 2
CO			3	4	5	6	7	8	9	10	11	12		
CO1	1	2											1	
CO2	2	2	2										2	1
CO3	2	2	3	1	2								2	2
CO4	2	2	3	1	1								2	2
	•			1	l: Lov	v, 2-N	lediur	n, 3- 1	High				•	

COURSE CONTENT	CO
TASK-1 (3H)	
1Practice DOS and LINUX Commands necessary for execution of C Programs.	
2Study of the Editors, Integrated development environments, and Compilers in	CO 1
chosen platform.	
3Write, Edit, Debug, Compile and Execute Sample C programs to understand the	
Programming environment.	
TASK-2 (3H)	
1. Practice programs: Finding the sum of three numbers, exchange of two numbers,	
largest of two numbers, to find the size of data types, Programs on precedence and	CO 1
Associativity of operators, sample programs on various library functions.	
TASK-3 (6H)	
1.Write a program to find the roots of a Quadratic equation.	
ravana Engineering College :: Gudur (Autonomous)	CO1



2.Write a C program to calculate the factorial of a given positive integer.	
3.Fibonacci sequence is defined as follows: the first and second terms in the	
sequence are 0 & 1. Subsequent terms are found by adding the preceding two terms	
in the sequence. Write a C program to generate the first n terms of the sequence.	
TASK-4 (6H)	
4.Write a C program to find the sum of individual digits of a positive integer.	
1. Write a program to reverse the digits of a number.	CO 2
2. Write a program to generate the series of prime numbers in the given range.	
7.Write a program to check for number palindrome.	
TASK-5 (6H)	
1.Write a C program for the following that use both recursive & non-recursive	
functions:	~ ~ ~
a. To calculate the factorial of a given positive integer.	CO 2
b. To find the greatest common divisor of two given integers.	
c. To generate Fibonacci series.	
2.Illustrate the use of auto, static, register and external variables.	
TASK-6 (3H)	
1. Write a program to find the sum of positive and negative numbers in a given set	
of numbers.	CO 3
2.Write C code to reverse the elements of the array. For example, [1,2,3,4,5] should	
become [5,4,3,2,1]	
3. Write a program to find the maximum of a set of numbers.	
TASK-7 (6H)	
1.Write a C program that use pointers to find Addition of Two Matrices	
2.Write a C program that use functions to find Multiplication of Two Matrices	CO 3
TASK-8 (3H)	
1. Write a program to accept a line of characters and print the number of vowels.	
Consonants, blank spaces, digits and special characters.	CO 3
2. Write a C program to check whether a given string is a palindrome or not.	
without using any built-in functions.	
TASK-9 (6H)	
1. Write a C program to find the length of a given string using pointers.	
2.Write a C program to add two distances in feet and inches using structure	
3.Write a C program to read and print an employee's detail using structure	CO 4
4. Write a C program to read and print book information using union	
TASK-10 (6H)	
Write a program to split a "file" into two files say file1 and file? Write lines into	
the 'file' from standard input. Read the contents from 'file' and write odd numbered	CO 4
lines into file1 and even numbered lines into file2	
2 Write a program to merge two files	
ADDITIONAL TASKS	
1 Write a program to find the Abundant Number	
2. Write a program to insert the element in a given position	
2. Write a program to insolt the element in a given position	I



Virtual Labs:								
1. Problem Solving Lab (IIIT HYDERABAD) : <u>http://ps-iiith.vlabs.ac.in/</u>								
List of Experiments								
1. Numerical Representation     6. Recursion								
2. Beauty of Numbers7. Advanced Arithmetic								
3. More on Numbers	8. Searching and Sorting							
4. Factorials	9. Permutation							
5. String Operations	10.Sequences							
2. Computer Programming Lab (IIIT HYDERA)	BAD) : http://cse02-iiith.vlabs.ac.in/							
List of Experiments								
1. Numerical Approximation	6. Basic Control Flow							
2. Functions	7. Pointers							
3. Advanced Control Flow	8. Recursion							
4. Arrays	9. Expression Evaluation							
5. Structures								
Text Book(s):								
1."How to Solve it by Computer", R.G. Drom	ney, 2014, Pearson.							
2.Programming in C and Data Structures, J.R	Hanly, Ashok N. Kamthane and A.Ananda.							
Rao, Pearson Education, 1 st Edition, 2010.								
Reference Book(s):								
1."The C Programming Language", Brian W.	Kernighan, Dennis M. Ritchie, 2 nd Edition,							
Pearson.								
2."Let us C", Yeswant Kanetkar, BPB publica	ations							
3."Pointers in C", Yeswant Kanetkar, BPB pu	blications, 16 th Edition, 2017							

4.Computer Science, A Structured Programming Approach Using C by Behrouz

Forouzan & Richard F. Gilberg, 3rd Edition, Cengage Learning

5.C Programming A Problem-Solving Approach, Behrouz A. Forouzan & E.V. Prasad,

6.F. Gilberg, 3rd Edition, Cengage Learning

7. Programming with C Rema Theraja, Oxford, 2018

8.Programming in C, 3rd Edition, 2015, Ashok N. Kamthane, Pearson Education

9. Programming in C, 3/e : A Practical Approach by Ajay Mittal, Pearson Publication

10.Problem Solving with C by SOMASHEKARA, M. T., GURU, D. S., MANJUNATHA, K. S., PHI Learning, 2nd Edition, 2018

11.C Programming with problem solving, J.A. Jones & K. Harrow, Dreamtech Press, 2001

12.Byron Gottfried, Schaum's Outline of Programming with C, 4th Edition, 2018, McGraw-Hill



### Web Resources:

1.<u>https://www.includehelp.com/c-programs/advacnce-c-examples.aspx</u>

2.<u>https://www.programiz.com/c-programming/examples</u>

3.<u>https://www.javatpoint.com/c-programs</u>

4.<u>https://www.w3resource.com/c-programming-exercises/</u>

5.https://www.sanfoundry.com/simple-c-programs/

6.<u>https://www.includehelp.com/c-programming-examples-solved-c-programs.aspx</u>

7.<u>http://www.c4learn.com/c-programs/tag/c-programs-typical-programs</u>



NARAYANA ENGINEERING COLLEGE::GUDUR									
I-B.Te	ch	Communication skills Lab (21EN1502) R2021							
Semeste	r H	Hours / Week		Total	Credit		:ks		
	L	L T P		hrs	С	CIE	SEE	TOTAL	
Ι	0	0	2	36	1	40	60	100	
Pre-req	Pre-requisite: English								
Course	Outcomes:	After suc	cessful co	ompletion	of the co	ourse, Stud	lent will b	be able to:	
CO 1	To develop	knowledg	ge, skills, a	and judgı	nent arou	nd human	communi	cation	
	that facilitate	es their ab	ility to wo	ork collabo	oratively v	vith others	•		
<b>CO 2</b> Develop their public speaking abilities to speak both formally and informally.									
CO 3	Understand	the nuan	ces of En	glish lang	guage and	l <b>skills</b> req	uired for e	effective	
	Participation	in group	activities.						

CO-PO Mapping														
CO	РО											PSO		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1									2	3				
CO2									2	3				
CO3									2	3				
				1	: Lov	v, 2-N	lediu	n, 3- 1	High					

# TASK – 1

Ice - Breaking Activity, Introducing Oneself and Others – Role Plays - Oral Description of Pictures, Photographs, Products, and Process

**Practice-1 :** - Ice Breaking Activity, Introducing Oneself and Others.

**Practice-2 :** Role Plays

Practice-3 : Oral Description of Pictures, Photographs, Products, and Process

### TASK - 2

What is Debate, How to Debate, Tips for Debate, Debate Practice, Explanation of Debate Techniques, Debate Videos Presentation-Telephone Etiquette, Making an Appointment, Telephone Talk and Tips **Practice-4:** Debate (Planned & Extempore) **Practice-5:** Telephonic Conversation Practice

# TASK - 3

What is Group Discussion, Types of Group Discussion, Tips and Techniques for Effective Group Discussion, Group Discussion Videos Presentation
Practice-6: Group Discussions (Planned & Extempore)
Practice-7: Group Discussions ()



# TASK - 4

Email writing - Resume Writing: Cover Letter – Structure of Resumes – Types of Resumes **Practice-8 :** Cover Letter **Practice-9 :** Resume Writing

### TASK-5

Oral presentations (individual and group) through Seminars / PPTs - Importance of Body Language -Poster Presentation - Public Speaking Tips, Effective Presentation of renowned speakers. **Practice-10 :** Public Speaking / Oral Presentations **Practice-11 :** Presentation using PPTs **Practice-12 :** Poster Presentation



Course Code		Course Title	C	ontac per	t Per weel	riods k	edits	Scheme of Examination Max. Marks			
	Cai			Т	Р	Tot al	Ū	Int. Marks	Ext. Marks	Total Marks	
21CH1001	BS	Chemistry		0	0	3	3	40	60	100	
21MA1003	BS	Vector Calculus Complex Variables and Transforms		1	0	4	4	40	60	100	
21ES1005	ES	Python Programming and Data Science		0	0	3	3	40	60	100	
21EN1001	HS	English		0	0	2	2	40	60	100	
21CH1501	BS	Chemistry Lab		0	3	3	1.5	40	60	100	
21ES1503	ES	Engineering Graphics	0	1	4	5	3	40	60	100	
21ES1508	ES	Python Programming and Data Science Lab		0	3	3	1.5	40	60	100	
21EN1501	HS	English Language Lab	0	0	3	3	1.5	40	60	100	
		Counseling/Mentoring	0	0	1	1	0				
		Sports/Hobby Clubs/Activities	0	0	2	2	0				
		Activity Point Programme	]	Durin	g the	Semes	ter	20 Points			
		Total	11	2	16	5 29	19.5	320	480	800	



NARAYANA ENGINEERING COLLEGE::GUDUR															
I-B.Tech				CH	IEMIS	STRY	(21Cl	H1001)					R202	21	
Semester		He	ours / W	'eek		Tota	ıl	Credit		Ma			x Marks		
	L	4	Т		Р	hrs		С	C	E	SEE		TOTA	4L	
II	3		0		0	48		3	4	0	60		100	)	
Pre-requ	isite: I	Basic	concep	ts in c	hemist	ry, Ad	lvance	ed engi	neerir	ig mat	erials,	chemi	stry in d	ay to	
day life, l	day life, Fossil fuels														
Course Objectives:															
1. To import to shall sign on a fine dam at an its and its and its and															
1.	To impa	art tec	hnologic	al aspe	ects of 1	modern	h chem	ustry and	d its ap	oplicati	ons.				
2.	Underst	the a	tudonta d	Istry De	enina e	lectroc	nemic	al energ	y syste	ms.					
5. 4	To train	i the s	owledge	of eng	princip	tes and	i appili ials an	d fuels	or pory	mers.					
т.	10 acqu	IIC KII	owieuge	or eng	meering	Sinator	iais an	u rueis.							
Course (	Outcom	ies: A	After such	ccessf	ul con	npletio	on of t	he cour	se. the	e stude	ent wil	l be ab	le to:		
	Under	stand	the <b>fun</b>	damen	tal con	cepts o	f chen	nistry to	predi	ct the s	tructu	re and	bonding	of	
CO 1	materi	als.(B	SL-2)			<b>F</b>			<b>r</b>						
CO 2	Discus	ss vari	ous kind	s of <b>ele</b>	ectro cl	nemical	l cells.	(BL-3)							
CO 3	Comp	are th	e <b>mater</b>	ials of	variou	ıs enerş	gy stoi	age dev	ices ar	d eme	rging to	echnolo	ogies.(BL	<b>3</b> )	
CO 4	Demo	nstrat	te the me	echanis	sm and	applic	ations	of diffe	rent po	olymer	s in ele	ctronic	devices.	(BL-3)	
CO 5	Explai	in cal	orific va	lues, r	efinin	g of pe	troleu	m and c	racki	ng of o	ils.(BL	L-2)			
II							_								
						CO-P	O Ma	pping							
	1					п	0						Б	<u>'0</u>	
-	PO	PO	PO	PO	PO	PO	D PO	PO	PO	PO	PO	PO		PSO	
CO	1	$\frac{10}{2}$	3	4	5	6	7	8	9	10	11	12	PSO1	2	
CO1	3														
CO2	3														
CO3	3						3								
CO4	3			-			3								
CO5	3						3								
	1	1	1		1: L	ow, 2-N	Aediu	m, 3- Hi	gh	1	1	1	1		

# **COURSE CONTENT**

MODULE – 1

### **Structure and Bonding Models**

10 Hrs

**Structure and Bonding Models:** Dual nature of matter- De Broglie's equation, Schrodinger wave equation, Molecular orbital theory – bonding in homo and hetero nuclear diatomic molecules– energy level diagrams of  $O_2$  and CO, etc.  $\pi$ -molecular orbital's of butadiene and benzene, calculation of bond order and magnetic properties, Crystal field theory – salient features – splitting in octahedral and tetrahedral complex.

At the end of the Module 1, student will be able to:

- 1. **Understand** the fundamental concepts of chemistry to predict the structure, properties and bonding of Engineering materials.(**BL-2**)
- 2. Explain the calculation of bond order of O₂ and Co molecules.(BL-2)
- **3. Discuss** the magnetic behavior and colour of coordination compounds.(**BL-2**)



MODULE -2	Electro Chemistry	10 Hrs							
Electro chemistry concepts, reference potentiometric titra titrations). PV Cell	Electrode potential, EMF of an electrochemical cell, Nernst equation, Electrodes (standard hydrogen, Calomel electrode, and glass electrode), potions (red ox titrations), concept of conductivity, conductometric titrations and its applications.	ectrodes – otentiometry- s (acid- base							
At the end of the M	odule 2, students will be able to:								
1. Demonst	rate competency in the basic concepts of electrochemical cells. (BL-3)								
2. Explain the significance of electrode potentials. (BL-2)									
3. List the different types of electrodes. (BL-1)									
4. Different	iate between Potentiometric and conductometric titrations. (BL-2)								
5. Illustrate	the construction of PV cell. (BL-3)								
MODULE-3	Battery Technology	09 Hrs							
classification hydro	ogen - oxygen fuel cell methanol - oxygen fuel cell SOFC - Merits and de	merits of fuel							
cell.         At the end of the M         1. Classify b         2. Explain t         3.Identify th	odule 3, students will be able to: patteries into different types. ( <b>BL-3</b> ) the concept involved in the construction of batteries. ( <b>BL-2</b> ) the significance of batteries.( <b>BL-1</b> )								
At the end of the M 1. Classify b 2. Explain t 3.Identify th 4. Compare	odule 3, students will be able to: batteries into different types. ( <b>BL-3</b> ) the concept involved in the construction of batteries. ( <b>BL-2</b> ) be significance of batteries.( <b>BL-1</b> ) the merits of different fuel cells. ( <b>BL-2</b> )								
At the end of the M 1. Classify b 2. Explain t 3.Identify th 4. Compare MODULE-4	odule 3, students will be able to: patteries into different types. ( <b>BL-3</b> ) the concept involved in the construction of batteries. ( <b>BL-2</b> ) the merits of different fuel cells. ( <b>BL-2</b> ) <b>Polymer Chemistry</b>	10 Hrs							
cell.         At the end of the M         1. Classify b         2. Explain t         3.Identify th         4. Compare         MODULE-4         Polymer Chemistr         polymer formation.         of -PVC,PTFE, Bal         Elastomers-Buna-S         acetylene, poly anil	odule 3, students will be able to:         batteries into different types. ( <b>BL-3</b> )         the concept involved in the construction of batteries. ( <b>BL-2</b> )         he significance of batteries.( <b>BL-1</b> )         the merits of different fuel cells. ( <b>BL-2</b> )         Polymer Chemistry         y: Introduction to polymers, polymerization, types of polymerization, mechanism of conduction and applications. Conducting polymers         S, Buna-N-preparation, properties and applications.	<b>10 Hrs</b> chanism of applications canization. – poly							
At the end of the M 1. Classify b 2. Explain ( 3.Identify th 4. Compare MODULE-4 Polymer Chemistry polymer formation. of –PVC,PTFE, Bal Elastomers–Buna-S acetylene, poly anil At the end of the M 1. Identify d	odule 3, students will be able to:         patteries into different types. ( <b>BL-3</b> )         the concept involved in the construction of batteries. ( <b>BL-2</b> )         ne significance of batteries.( <b>BL-1</b> )         the merits of different fuel cells. ( <b>BL-2</b> ) <b>Polymer Chemistry</b> y: Introduction to polymers, polymerization, types of polymerization, mec         Plastics - Thermoplastics and Thermosetting, Preparation, properties and kelite, Urea- formaldehyde resin, Nylons. Natural Rubber, processing, vulo         S, Buna-N-preparation, properties and applications.         odule 4, students will be able to:         ifferent types of polymers ( <b>BL-1</b> )	<b>10 Hrs</b> Chanism of applications canization. – poly							
cell.         At the end of the M         1. Classify b         2. Explain the end of the M         3.Identify the end of the M         4. Compare         MODULE-4         Polymer Chemistr         polymer formation.         of -PVC,PTFE, Bal         Elastomers-Buna-S         acetylene, poly anil         At the end of the M         1. Identify d         2. Distinguis         3. Explain the end of the M	odule 3, students will be able to:         patteries into different types. (BL-3)         the concept involved in the construction of batteries. (BL-2)         ne significance of batteries.(BL-1)         the merits of different fuel cells. (BL-2)         Polymer Chemistry         y: Introduction to polymers, polymerization, types of polymerization, mec         Plastics - Thermoplastics and Thermosetting, Preparation, properties and kelite, Urea- formaldehyde resin, Nylons. Natural Rubber, processing, vul-         S, Buna-N-preparation, properties and applications.         odule 4, students will be able to:         ifferent types of polymers. (BL-1)         sh between thermoplastic and thermo setting resins. (BL-2)         ne preparation, properties and applications of some plastic materials. (BL-2)         knowledge of advanced polymers, conducting polymers for different types for different types for different polymers. (BL-1)	<b>10 Hrs</b> chanism of applications canization. – poly							

&LCV, Solid fuels, Analysis of coal-proximate and ultimate. Liquid Fuels: refining of petroleum, synthetic petrol preparation by Fischer- tropsch Process,Gaseous fuels;Natural gas,water gas,producer gas and coal gas.

At the end of the Module 5, students will be able to:

- **1. Differentiate** petroleum, petrol, synthetic petrol and have knowledge how they are produced. **(BL-2)**
- **2. Select** suitable fuels for IC engines. (**BL-1**) Narayana Engineering College :: Gudur (Autonomous)



3. Explain calorific values, octane number, refining of petroleum and cracking of oils. (BL-2)

**Total hours: 48 Hours** 

#### **Content beyond syllabus:**

- 1. Valency bond theory
- 2. Compounding of natural rubber
- 3. Fuel analysis and methods for preparation of synthetic petrol

#### Self-Study:

Contents to promote self-Learning:

SNO	Module	Reference
1	Molecular orbital	https://www.youtube.com/watch?v=FMxuss0RXOU
	theory	
2	Reference	https://www.youtube.com/watch?v=WMfXlncyMDc
	electrodes	
3	Battreies	https://nptel.ac.in/courses/103/108/103108162/
4	Plastics	https://www.youtube.com/watch?v=FATc12opDCA
5	Refining of	https://www.youtube.com/watch?v=INqhbIl8r4Q
	petroleum	

### **Text Book(s):**

- 1. P. C. Jain & Monika Jain, *Engineering Chemistry*, Dhanpat Ray Publishing Company (P) Ltd, New Delhi, 16th edition, 2013.
- 2. K. N. Jayaveera, G. V. Subba Reddy and C. Ramachandraiah, *Engineering Chemistry*, McGraw Hill Publishers, New Delhi.
- 3. Energy scenario beyond2100, by S.Muthu Krishna Iyer.

#### **Reference Book(s):**

- 1. J. D. Lee, *Concise Inorganic Chemistry*, Oxford University Press, 5th edition 2010.
- 2. Skoog and West, *Principles of Instrumental Analysis*, Thomson, 6th edition, 2007.

3. Peter Atkins, Julio de Paula and James Keelar, Atkins' Physical Chemistry, Oxford University Press,

10th edition, 2010.

### **Online Resources /Web References:**

- 1. <u>https://drive.google.com/file/d/0Bz82vSA0C1xIWC11WkpsTmlwQVk/view</u>
- 2. https://www.cgaspirants.com/2017/08/engineering-chemistry-by-jain-jain.html
- 3.<u>https://www.pdfdrive.com/concise-inorganic-chemistry-d33405948.html</u>
- 4.<u>https://chemistry.com.pk/books/skoog-principles-of-instrumental-analysis1/</u>
- 5.https://www.thermalfluidscentral.org/e-books/book-intro.php?b=39
- 6.file:///C:/Users/DELL/Downloads/HandbookOfInstrumentalTechniquesForAnalyticalChemistryPDFDrive.com.pdf
- 7. https://nptel.ac.in/courses/104/106/104106096/
- 8. https://youtu.be/KHh_IX1G6uA

9.https://www.youtube.com/watch?v=MfbxR9ZDs0s&feature=youtu.be

- 10.https://nptel.ac.in/courses/113/105/113105028/
- 11.<u>https://www.youtube.com/watch?v=15MY7abeCDk</u>



			NARA	YAN	A ENO	FINE	ERINO	G COL	LEG	E: GU	DUR			
I-B. Tech		V	ECT(	OR C. T	ALCU FRAN	JLUS SFOI	CON RMS (	1PLE (21MA	X VA 41003	RIAB B)	SLES	&		R-2021
Semester		Ho	ours / V	Veek		Т	otal	Cre	dit		Ν	/lax M	arks	
	L		Т		Р	1	hrs	C		CIE		SEE	2	TOTAL
II	3		1		0		64	4		40		60		100
Pre-requisite: inter mathematics														
1. T 2. T 3. T 4. T 5. T	<ol> <li>To enlighten the learners in the concept of vector differentiation and integration.</li> <li>To understand the concept the limit, continuity &amp; differentiation of complex variable</li> <li>To Evaluate the improper integrals by complex integration</li> <li>To understand the concepts of Laplace transforms and Inverse Laplace transforms &amp; its properties.</li> <li>To understand the concepts of Fourier series, Fourier transforms and its properties.</li> </ol>													
CO 1	<b>CO1</b> Interpret the different operators such as gradient our and divergence to find out point													
001	funct	ion	• • • • • • • •		p • 1 • 1 • 0	10 0000			,					· point
	(L-3)	)												
CO 2	Unde	erstand	the co	ncept t	the lim	it, con	tinuity	& dif	ferenti	ation o	of com	olex va	riable	(L-3)
CO 3	Evalı	late th	e integ	ral by	using c	contou	r integ	ration						.(L-5)
<b>CO 4</b>	Appl	y the L	Laplace	e transf	form to	conve	ert time	e doma	in inte	o frequ	ency d	omain	& Inve	rse Laplac
	trans	- forms :	technic	ques to	solve	the dif	fferenti	ial equ	ations		•			(L-3)
CO 5	Deve	lop the	e Fouri	er Seri	es to t	he give	en peri	odic fu	inction	ıs				(L-3)
	I				(	CO-P	0 Mai	oping						
						P	0						I	PSO
CO	<b>PO1</b>	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
		2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3												
CO2	3	3												
CO3	3	3												
CO4	3	3												
CO5	3	3												
	1- Low, 2-Medium, 3- High													
					CC	DURS	E CON	NTEN	Г					

MODULE – 1	Vector Calculus	Hours: 12h(9L+3T)							
Scalar and vector point functions, vector operator del, del applies to scalar point functions Gradient, del									
applied to vector point functions-Divergence and Curl, Line integra circulation-work done, surface									
integral-flux, Gre	integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume								
integral, Divergen	ce theorem (without proof) and applications of these theorem	ns.							
At the end of the M	odule 1, students will be able to:								
1. Apply of	1. Apply del to Scalar and vector point functions (L-3)								
2. Illustrat	te the physical interpretation of Gradient, Divergence and Cu	url (L-2)							
3. Apply of	lel to scalar and vector point functions.	(L-3)							
4. Illustrat	te the physical interpretation of gradient, divergence and curl	. (L-2)							
MODULE -2	Complex variables – Differentiation	Hours: $12h(9L+3T)$							
Introduction to functions of complex variable-concept of Limit & continuity Differentiation, Cauchy-									
Riemann equation	s, analytic functions, harmonic functions finding harmonic	conjugate-construction of							

analytic function by Milne Thomson method.



At the end of the Mo	dule 2, students will be able to:								
1. Find the	work done in moving a particle along the path over a force	field	(L-1)						
2. Evaluate	the rates of fluid flow along and across curves.		(L-5)						
3. Evaluati	on of surface areas integrals by applying Green's theorems	8.	(L-5)						
4. Evaluati	on of volume integrals by applying Gauss theorems.		(L-5)						
5. Evaluati	on of line integrals by applying Stokes theorems.								
(L-5)									
MODULE-3	<b>Complex variables – Integration</b>	Hours: 1	l2h(9L+3T)						
Line integral-Conto (without proof), ze theorem (without p improper integrals	but integration, Cauchy's integral theorem (without proof) bros of analytic functions, singularities Laurent's series; R roof), Evaluation of definite integral involving sine and cos (around unit circle semi-circle with $f(z)$ not having poles on	Cauchy Int Residues, Ca sine, Evalua real axis).	tegral formula tuchy Residue tion of certain						
At the end of the Module 3, students will be able to:									
1. Understand the integration of complex functions. (L-3)									
2. Apply Cauch	2. Apply Cauchy's integral theorem and Cauchy's integral formula. (L-3)								
3. Understand s	singularities of complex functions.		(L-3)						
4. Evaluate imp	proper integrals of complex functions using Residue theorem	n.	(L-3)						
MODULE-4	Laplace Transforms	Hours: 1	6h(12L+4T))						
Definition-Laplace	transform of standard functions-existence of Laplace Trans	sform Inver	se transform –						
theorem–Dirac's of Differentiation and equations with com	delta function Convolution theorem Laplace transform l integration of transform solving Initial value problems stant coefficients using Laplace transforms	n of Peric s to ordinar	odic function. ry differential						
At the end of the Mo	dule 4, students will be able to:								
1. Understand	he concept of Laplace transforms and find the Laplace trans	sforms of el	ementary						
functions.			(L-3)						
2. Find the Lap	lace transforms of general functions using its properties.		(L-2)						
3. Understand	Laplace transforms of special functions (Unit step function,	Unit Impuls	se & Periodic).						
			(L-3)						
4. Apply Lapla	ce transforms to solve Differential Equations.		(L-3)						
	Fourier Transform Fourier Series & Fourier								
MODULE-5	Transforms	Hours: 1	l2h(9L+3T)						
Fourier Series: existence of Fou	Determination of Fourier coefficients (Euler's)–Diric rier series–functions having discontinuity-Fourier se	chlet condi eries of Ev	tions for the ven and odd						
functions – Half-	ange Fourier sine and cosine expansions.								
Fourier Transfe	orm: Fourier integral theorem (without proof)-Fo	ourier sine	and cosine						
integrals-complex	a form of Fourier integral. Fourier transform Fo	urier sine	and cosine						
transforms Proper	ties – Inverse transforms.								
At the end of the Mo	dule 5, students will be able to:		·						
1. Understand	he concepts of Fourier transforms.		(L-2)						
2. Apply the pr	operties of Fourier transforms to Various engineering proble	ems.	(L-3)						
4. Make use of	the Fourier transforms and its inverse in practical application	ons of electr	onics						
engineering.	and a surfer dunisioning and its inverse in practical application		(L-3)						
	Te	otal hours	64						



#### Content beyond syllabus

- 1. Complex Fourier series.
- 2. Parseval's Identity for Fourier Transforms.

### Self-Study:

Contents to promote self-Learning:

	1 0		
SNO	Торіс	CO	Reference
1	Vector Differentiation & vector integration	CO1	https://youtu.be/a19x_YG0oLg
2	Complex differentiation	CO2	https://youtu.be/pfCwRLK29h4https://youtu.be/KH iw9Vs-aLM
3	Complex integration	CO3	https://youtu.be/luJM137- nsohttps://youtu.be/EDVJotmT584
4	Laplace transform &Inverse Laplace transforms	CO4	https://youtu.be/9NqdBXNyJPkhttps://youtu.be/0ZlT hUd-yyw
5	Fourier series & Fourier transforms	CO5	https://youtu.be/4cSZDHxyBf4

#### Text Book(s):

- 1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers.
- 2. Ramana B.V., "Higher Engineering Mathematics", McGraw Hill Publishers.

#### **Reference Book(s):**

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley.
- 2. Veerarajan T., "Engineering Mathematics", Tata McGraw-Hill.
- 3. N.P. Bali and Manish Goyal,"AText ook of Engineering Mathematics", Laxmi Publication

#### **Online Resources/ Web References:**

- 1. <u>http://keralatechnologicaluniversity.blogspot.in/2015/06/erwin-kreyszig-advanced-engineering-mathematics-ktuebook-download.html</u>
- 2. http://www.faadooengineers.com/threads/13449-Engineering-Maths-II-eBooks .
- 3. http://www.efunda.com/math/math_home/math.cfm
- 4. <u>http://www.ocw.mit.edu/resources/#Mathematics</u>
- 5. <u>http://www.sosmath.com/</u>
- 6. <u>http://www.mathworld.wolfram.com</u>



NARAYANA ENGINEERING COLLEGE::GUDUR														
I-B.Te	ch	P	YTHO	)N PI	ROGI	RAM	MINC	<b>FAN</b>	D DA'	TA S	CIEN	CE	I	R2021
						(2)	1ES1(	)05)						
0		Hours / Week Total Credit										Max I	Marks	
Semest	er –	L		Т	P		hrs		С	С	IE	SE	E T	OTAL
II		3		0	0		48		3	4	0	60		100
Pre-requisite: Basics of programming Language.														
Course	e Obje	ectives	5:											
1. '	To lea	arn abo	out P	ython	progr	ammi	ing la	nguag	ge syn	tax, s	emant	tics, a	nd the	runtime
	enviro	nment	-											
2.	To be	famil	iarize	d witl	h gen	eral c	ompu	ter p	rogran	ming	conc	epts 1	ike con	ditional
	execut	tion, lo	oops &	k func	tions									
3.	To lea	rn abo	ut mu	table	and ir	nmuta	able ty	pes.						
4. '	To lea	rn abo	ut the	data	scienc	e rela	ted fu	nctio	ns in N	JUMI	PY.			
5.	To sol	ve dat	a scie	nce pr	oblen	ns usi	ng PA	NDA	S.					
Course	Outco	omes:	After	succe	essful	comp	pletion	n of t	he cou	irse, S	Stude	nt wil	l be abl	e to
CO 1	Dem	onstra	te var	ious	opera	tors,	data	type	s and	decis	ion s	tructu	ires in	python.
	(BL ·	- 3)												
CO 2	Solve	e probl	lems ı	ising	Funct	ions a	and d	ata si	tructu	res in	Pythe	on (BI	L - 3)	
CO 3	Impl	ement	the co	oncept	t of <b>Fi</b>	les ar	nd Mo	dule	s (BL	- 3)				
<b>CO 4</b>	Impl	ement	Data	Scien	ce que	eries u	ising I	NUM	<b>PY</b> m	odule	(BL -	3)		
CO 5	Solve	e data	manip	oulatio	on tasl	c usin	g PAN	NDAS	S mod	ıle (B	L - 3)			
					(	CO-P	O Ma	appiı	ng					
						P	0	_					P	<b>SO</b>
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1											1	
CO2	2	2											2	
CO3	2	1											2	
CO4	2	2											1	
CO5	2	2											1	1
					1: Lo	w, 2-	Mediu	$1m, \overline{3}$	- High					

COURSE CONTENT									
MODULE – 1 I/O and Decision Structures 10H									
Input and Outp	Input and Output: Introduction to Python and installation, Input and Output, Comments,								
Variables, Operat	ors. Type conversions, Expressions, Data types.								
Decision Structures	s and Boolean Logic: if, if-else, if-elif-else Statements, Nested D	Decision Structures.							
Looping: while loop,	for loop, Nested Loops.								
At the end of the I	Module 1, students will be able to:								
1. <b>Describe</b> pyth	on expressions, data types (BL-2)								
2. Perform vario	bus Arithmetic calculations using Operators in Python(BL-3)								
3. Demonstrate	the usage of looping structures in python Language.(BL-3)								
MODULE -2Functions and Data structures10H									
Functions: Definition, Function Arguments, Anonymous Function, Scope of the variable and									
Narayana Engineerin	ng College :: Gudur (Autonomous)								



namesp	acing, Recursion, Map, Filter and	Reduce Functions								
Strings	Strings, Lists, Tuples and Dictionaries: String Methods and Operations, Lists: Operations and Methods,									
Tuples:	Fuples: Operations and Methods, Dictionaries: Operations and Methods.									
At the	e end of the Module 2, students	will be able to:								
1.	1. Implement Functions to solve problems.(BL-3)									
2.	2. Describe various String handling functions in python(BL-2)									
3.	Describe the various Lists, T	uples and Dictionaries in python(B	3L-2)							
MO	DULE-3	Files and Modules	10H							
Files: 7	Fext Files, File Operations, File	Functions, Copying the Files, Two Fi	iles Merging into Single							
File.										
Modul	es: Modules, Standard Module	s, Packages.								
At the e	end of the Module 3, students v	vill be able to:								
	1. Describe the concepts of F	iles (BL-2).								
	2. Describe the importance of	Modules and packages (BL-2).								
MO	DULE-4 I	ntroduction to Numpy	9H							
Introd	uction to Numpy: Fixed-Type	Arrays in Python, Creating Arrays fro	om Lists, Creating Arrays							
from So	cratch Numpy Standard Data T	ypes, The Basics of Numpy Arrays, N	umpy Array Attributes.							
Array	Indexing: Accessing Single I	Elements, Array Slicing: Accessing S	Subarrays, Reshaping of							
Arrays,	, Array Concatenation and Splin	tting. Computation on Numpy Arrays:	Universal Functions.							
At the o	end of the Module 4, students v	vill be able to:								
1.	Describe the concept of Nump	y Module(BL-2)								
2.	Solve numerical problems rela	ted to data science using <b>Numpy Arra</b>	ays.(BL-3)							
3.	Apply Universal Functions for	or Data Science problems(BL-3)								
MC	3. Apply Universal Functions for Data Science problems(BL-3)									
	DULE-5 Data	Manipulation with Pandas	9H							
MC Data	DULE-5 Data Manipulation with Pandas: U	Manipulation with Pandas	9H 9 Pandas Objects Pandas							
Data Series	DULE-5         Data           Manipulation with Pandas: Instruction Solution Object, Pandas DataFrame Object, Pan	Manipulation with Pandas nstalling and Using Pandas, Introducin bject, Pandas Index Object, Data Inde	9H ng Pandas Objects, Pandas lexing and Selection Data							
Data Series Select	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.	Manipulation with Pandas nstalling and Using Pandas, Introducin bject, Pandas Index Object, Data Inde	9H ng Pandas Objects, Pandas lexing and Selection Data							
Data Series Select Data	DDULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper	Manipulation with Pandas nstalling and Using Pandas, Introducin bject, Pandas Index Object, Data Inder rating on Data in Pandas Ufuncs: Inder	9H ag Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs:							
Data Series Select Data Index	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper Alignment, Operations Betwe	Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Inder Fating on Data in Pandas Ufuncs: Inder en DataFrame and Series, Handling M	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs							
MCDataSeriesSelectDataIndexin Mis	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper Alignment, Operations Betwe ssing Data Conventions, Missin	Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Index ating on Data in Pandas Ufuncs: Index en DataFrame and Series, Handling Mag Data in Pandas, Operating on Null V	9H ag Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values.							
Data Series Select Data Index in Mis	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper Alignment, Operations Betwe ssing Data Conventions, Missing end of the Module 5, students v	Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Index rating on Data in Pandas Ufuncs: Index en DataFrame and Series, Handling Mag Data in Pandas, Operating on Null Wirk will be able to:	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values.							
MCDataSeriesSelectDataIndexin MisAt the c1.	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper Alignment, Operations Betwe ssing Data Conventions, Missin end of the Module 5, students v Describe the concept of Data	Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Index ating on Data in Pandas Ufuncs: Index en DataFrame and Series, Handling Mag Data in Pandas, Operating on Null V vill be able to: Manipulation (BL-2).	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values.							
MCDataSeriesSelectDataIndexin MisAt the c1.2.	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper Alignment, Operations Betwe ssing Data Conventions, Missing end of the Module 5, students v Describe the concept of Data Describe the concept of Pane	Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Index rating on Data in Pandas Ufuncs: Index en DataFrame and Series, Handling Mag Data in Pandas, Operating on Null Will be able to: Manipulation (BL-2). las for Data Science(BL-2)	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values.							
MCDataSeriesSelectDataIndexin MisAt the c1.2.3.	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper Alignment, Operations Betwe ssing Data Conventions, Missin end of the Module 5, students v Describe the concept of Data Describe the concept of Pano Apply Ufunctions in pandas to	Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Index ating on Data in Pandas Ufuncs: Index ating on Data in Pandas Ufuncs: Index ating on Data in Pandas, Operating on Null V will be able to: Manipulation (BL-2). Ias for Data Science(BL-2) to generate DataFrame (BL-3)	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values.							
MCDataSeriesSelectDataIndexin MisAt the original1.2.3.4.	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper Alignment, Operations Betwe ssing Data Conventions, Missin end of the Module 5, students v Describe the concept of Data Describe the concept of Panda Apply Ufunctions in pandas to Implement Pandas Module to	Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Index rating on Data in Pandas Ufuncs: Index en DataFrame and Series, Handling Mag Data in Pandas, Operating on Null Way will be able to: Manipulation (BL-2). Ias for Data Science(BL-2) to generate DataFrame (BL-3) handle Missing Data(BL-3)	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values.							
MCDataSeriesSelectDataIndexin MisAt the c1.2.3.4.	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper Alignment, Operations Betwe ssing Data Conventions, Missin end of the Module 5, students v Describe the concept of Data Describe the concept of Pano Apply Ufunctions in pandas to Implement Pandas Module to	Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Index ating on Data in Pandas Ufuncs: Index ating on Data in Pandas Ufuncs: Index ating on Data in Pandas, Operating on Null V and Bable to: Manipulation (BL-2). It for Data Science(BL-2) to generate DataFrame (BL-3) handle Missing Data(BL-3) Total hours:	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values. 48 HOURS							
MCDataSeriesSelectDataIndexin MisAt the original1.2.3.4.	DULE-5         Data           Manipulation with Pandas: In         Sobject, Pandas DataFrame O           s Object, Pandas DataFrame O         Sobject, Pandas DataFrame O           tion in Series.         Selection in DataFrame Oper           Alignment, Operations Betwee         Ssing Data Conventions, Missing           end of the Module 5, students v         Describe the concept of Data           Describe the concept of Pandas         Module to           Apply Ufunctions in pandas to         Implement Pandas Module to	Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Index rating on Data in Pandas Ufuncs: Index and DataFrame and Series, Handling Mag Data in Pandas, Operating on Null Way will be able to: Manipulation (BL-2). Ias for Data Science(BL-2) to generate DataFrame (BL-3) handle Missing Data(BL-3) Total hours:	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values. 48 HOURS							
MCDataSeriesSelectDataIndexin MisAt the c1.2.3.4.Conter1	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper Alignment, Operations Betwe ssing Data Conventions, Missin end of the Module 5, students v Describe the concept of Data Describe the concept of Pano Apply Ufunctions in pandas to Implement Pandas Module tont Beyond Syllabus: Regular Expressions	Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Index ating on Data in Pandas Ufuncs: Index ating on Data in Pandas Ufuncs: Index and Series, Handling Margon Data in Pandas, Operating on Null V will be able to: Manipulation (BL-2). Itas for Data Science(BL-2) to generate DataFrame (BL-3) handle Missing Data(BL-3) Total hours:	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values. 48 HOURS							
MCDataSeriesSelectDataIndexin MisAt the original1.2.3.4.Conter1.2	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper Alignment, Operations Betwe ssing Data Conventions, Missin end of the Module 5, students v Describe the concept of Data Describe the concept of Pano Apply Ufunctions in pandas to Implement Pandas Module tont Beyond Syllabus: Regular Expressions Matplotlib	Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Index rating on Data in Pandas Ufuncs: Index and DataFrame and Series, Handling Mag Data in Pandas, Operating on Null Way will be able to: Manipulation (BL-2). Ias for Data Science(BL-2) to generate DataFrame (BL-3) handle Missing Data(BL-3) Total hours:	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values. 48 HOURS							
MCDataSeriesSelectDataIndexin MisAt the c1.2.3.4.Conter1.2.Solf Select	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper Alignment, Operations Betwe ssing Data Conventions, Missin end of the Module 5, students v Describe the concept of Data Describe the concept of Pance Apply Ufunctions in pandas to Implement Pandas Module tont Beyond Syllabus: Regular Expressions Matplotlib	Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Index ating on Data in Pandas Ufuncs: Index ating on Data in Pandas Ufuncs: Index and Series, Handling Margon Data in Pandas, Operating on Null V will be able to: Manipulation (BL-2). Itas for Data Science(BL-2) to generate DataFrame (BL-3) handle Missing Data(BL-3) Total hours:	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values. 48 HOURS							
MCDataSeriesSelectDataIndexin MisAt the original1.2.3.4.Conter1.2.Self-StCont	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper Alignment, Operations Betwe ssing Data Conventions, Missin end of the Module 5, students v Describe the concept of Data Describe the concept of Pand Apply Ufunctions in pandas to Implement Pandas Module tont Beyond Syllabus: Regular Expressions Matplotlibtudy: ants to promote salf Learning	A Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Index rating on Data in Pandas Ufuncs: Index and DataFrame and Series, Handling Mag Data in Pandas, Operating on Null Way will be able to: Manipulation (BL-2). Ias for Data Science(BL-2) to generate DataFrame (BL-3) handle Missing Data(BL-3) Total hours:	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values. 48 HOURS							
MCDataSeriesSelectDataIndexin MisAt the original1.2.3.4.Conter1.2.Self-StCont	DULE-5       Data         Manipulation with Pandas: In       Sobject, Pandas DataFrame O         s Object, Pandas DataFrame O       Dition in Series.         Selection in DataFrame Oper       Alignment, Operations Betwe         Alignment, Operations Betwe       Ssing Data Conventions, Missing         end of the Module 5, students v       Describe the concept of Data         Describe the concept of Pano       Apply Ufunctions in pandas to Implement Pandas Module to Implement Pandas Module to Implement Pandas Module to Implement Expressions         Matplotlib       Implement self-Learning	Manipulation with Pandas Installing and Using Pandas, Introducin bject, Pandas Index Object, Data Index ating on Data in Pandas Ufuncs: Index ating on Data in Pandas Ufuncs: Index and Series, Handling Margo Data in Pandas, Operating on Null V will be able to: Manipulation (BL-2). Itas for Data Science(BL-2) to generate DataFrame (BL-3) handle Missing Data(BL-3) Total hours:	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values. 48 HOURS							
MCDataSeriesSelectDataIndexin MisAt the original1.2.3.4.Conter1.2.Self-StContS No	DULE-5DataManipulation with Pandas: In s Object, Pandas DataFrame O tion in Series.Selection in DataFrame Oper Alignment, Operations Betwe ssing Data Conventions, Missin end of the Module 5, students v Describe the concept of Data Describe the concept of Pand Apply Ufunctions in pandas to Implement Pandas Module tont Beyond Syllabus: Regular Expressions Matplotlibtudy: ents to promote self-Learning Module	Manipulation with Pandas Astalling and Using Pandas, Introducin bject, Pandas Index Object, Data Index ating on Data in Pandas Ufuncs: Index and an DataFrame and Series, Handling M ag Data in Pandas, Operating on Null V will be able to: Manipulation (BL-2). As for Data Science(BL-2) to generate DataFrame (BL-3) handle Missing Data(BL-3) Total hours: Reference	9H ng Pandas Objects, Pandas lexing and Selection Data dex Preservation UFuncs: Missing Data, Trade-Offs Values. 48 HOURS							
MCDataSeriesSelectDataIndexin MisAt the original1.2.3.4.Conter1.2.Self-StContS No	DULE-5       Data         Manipulation with Pandas: In         a Object, Pandas DataFrame O         tion in Series.         Selection in DataFrame Oper         Alignment, Operations Betwe         ssing Data Conventions, Missing         end of the Module 5, students w         Describe the concept of Data         Describe the concept of Pano         Apply Ufunctions in pandas to         Implement Pandas Module to         nt Beyond Syllabus:         Regular Expressions         Matplotlib         tudy:         ents to promote self-Learning         Module	Manipulation with Pandas Astalling and Using Pandas, Introducin bject, Pandas Index Object, Data Index ating on Data in Pandas Ufuncs: Index ating on Data in Pandas Ufuncs: Index ag Data in Pandas, Operating on Null V vill be able to: A Manipulation (BL-2). As for Data Science(BL-2) to generate DataFrame (BL-3) Andle Missing Data(BL-3) Total hours:  Reference <a background-com="" href="https://www.youtube.com/watch?ventementementementementementementemente&lt;/td&gt;&lt;td&gt;9H         ng Pandas Objects, Pandas         lexing and Selection Data         dex Preservation UFuncs:         Missing Data, Trade-Offs         Values.         48 HOURS&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;MCDataSeriesSelectDataIndexin MisAt the original1.2.3.4.Conter1.2.Self-StContS No1&lt;/td&gt;&lt;td&gt;DULE-5DataManipulation with Pandas: In&lt;br/&gt;s Object, Pandas DataFrame O&lt;br/&gt;tion in Series.Selection in DataFrame Oper&lt;br/&gt;Alignment, Operations Betwe&lt;br/&gt;ssing Data Conventions, Missin&lt;br/&gt;end of the Module 5, students v&lt;br/&gt;Describe the concept of Data&lt;br/&gt;Describe the concept of Pand&lt;br/&gt;Apply Ufunctions in pandas to&lt;br/&gt;Implement Pandas Module tont Beyond Syllabus:&lt;br/&gt;Regular Expressions&lt;br/&gt;MatplotlibmultipleModuleI/O and Decision Structures&lt;/td&gt;&lt;td&gt;Manipulation with Pandas Astalling and Using Pandas, Introducin bject, Pandas Index Object, Data Index ating on Data in Pandas Ufuncs: Index and DataFrame and Series, Handling Mag Data in Pandas, Operating on Null W will be able to: Manipulation (BL-2). Mas for Data Science(BL-2) Science (BL-2) Science (BL-3) Andle Missing Data(BL-3) Total hours:  Reference &lt;a href=" https:="" td="" w<="" watch?vience="" www.youtube.com=""><td>9H         ng Pandas Objects, Pandas         lexing and Selection Data         dex Preservation UFuncs:         Missing Data, Trade-Offs         Values.         48 HOURS</td></a>	9H         ng Pandas Objects, Pandas         lexing and Selection Data         dex Preservation UFuncs:         Missing Data, Trade-Offs         Values.         48 HOURS							
MCDataSeriesSelectDataIndexin MisAt the original1.2.3.4.Conter1.2.Self-StContS No12	DULE-5       Data         Manipulation with Pandas: In       Sobject, Pandas DataFrame O         s Object, Pandas DataFrame O       Dition in Series.         Selection in DataFrame Oper       Alignment, Operations Betwe         Alignment, Operations Betwe       Ssing Data Conventions, Missing         end of the Module 5, students w       Describe the concept of Data         Describe the concept of Pano       Apply Ufunctions in pandas to Implement Pandas Module to Implement Pandas Module to Implement Pandas Module to Implement sto promote self-Learning         Module       I/O and Decision Structures         Functions and Data structures       Functions and Data structures	Manipulation with Pandas Astalling and Using Pandas, Introducin bject, Pandas Index Object, Data Index ating on Data in Pandas Ufuncs: Index ating on Data in Pandas Ufuncs: Index ag Data in Pandas, Operating on Null V vill be able to: A Manipulation (BL-2). As for Data Science(BL-2) to generate DataFrame (BL-3) Andle Missing Data(BL-3) Total hours:  C Reference <a href="https://www.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewww.youtube.com/watch?villestylewywywywywywywywywywywywywywywywywywyw</td> <td>9H         ng Pandas Objects, Pandas         lexing and Selection Data         dex Preservation UFuncs:         Missing Data, Trade-Offs         Values.         48 HOURS</td>	9H         ng Pandas Objects, Pandas         lexing and Selection Data         dex Preservation UFuncs:         Missing Data, Trade-Offs         Values.         48 HOURS							



		https://www.youtube.com/watch?v=m9n2f9lhtrw
3	Files and Modules	https://www.youtube.com/watch?v=ixEeeNjjOJ0 https://www.youtube.com/watch?v=jZ5agHjNR3U
4	Introduction to Numpy	https://www.youtube.com/watch?v=8vVNq6JzGl8 https://www.youtube.com/watch?v=rN0TREj8G7U
5	Data Manipulation with Pandas	https://www.youtube.com/watch?v=8uK65aNfQ3I https://www.youtube.com/watch?v=B42n3Pc-N2A

# **Text Books:**

- 1. Fundamentals of Python First Programs, Kenneth. A. Lambert, Cengage.
- 2. Python Data Science Hand Book, Jake Vanderplas, First Edition, Oreilly

### **Reference Book(s):**

- 1. Introduction to Python Programming, Gowrishankar. S, Veena A, CRC Press.
- 2. Python Programming: A Modern Approach, Vamsi Kurama, Pearson.
- 3. Python for Data Analysis-Wes McKinney, 2nd-Edition, Oreilly.
- Python Programming: A Modern Approach, Vamsi Kurama, Pearson. Braun W. J., Murdoch D. J., A First Course in Statistical Programming with R, Cambridge University Press, 2007

### **Online Resources / Web Resources:**

- 1. <u>www.tutorialpoint.com/Python</u>
- 2. <u>www.geeksforgeeks.org/python</u>
- 3. <u>www.programiz.com/python-programming</u>
- 4. <u>https://numpy.org</u>
- 5. https://pandas.pydata.org



NARAYANA ENGINERING COLLEGE:GUDUR COURSE CONTENT											
ENGMER (ZEEN1001)											
Gnannear: Parts Abuspewber Kinds of Arnteheredit Sentanse Nanktures: Identifying the											
sentences,Senter	ncePatt	ern,Sent	encel	mprovemen	tandConstru	ction,Sentenc	eCompleti	on,Sente			
nceArrangement	"Joinin	gsentent	čes,P	arajumbles.	L	CIE	SEE	TOTAL			
Vocabulary:Co	ncept o	of word f	) orma	tion ³² / ₋ Syno	nyms& Anto	40 pnyms – Hom	60 onymsHoi	100 nophones			
Pre Pequisites ENC	Pre-Prequisité: spinisers formonly confused Words-Onewords ubstitutes-Idioms & Phrasal Verbs.										
Course Objectives :	:										
After the completio	on of the	is Modul	e 1 s	tudents are	able to:	awareness of	Fnglish				
1. wstrettines	entrenet	eron tron	510 U	tion(and imp	provement.		English				
2. To devel 2. understand	op the	students	s in g Bethf	etting the in sentencesar	formation of the state of the s	of word powe	r and able				
3. ^{3.} know ther 4. To demo	nce the Ormationstrate	ability off off wo the abil	af wi ds b lity to	iting the str y using Affix( o write error	uctural Eng	lish among th n communica	ne students tion.	5.			
4.5.UfToberbitsting	lguhies Isi I	milain viete	rals for	whth piecisting	edietalifferend	tnwakela(11ste) of	contextual	l			
5. enhance th	e know	ledge of	gs of Idion	natic languag	e and its usa	ge(L2)					
Course Outcomes:	After su	uccessful	-com	pletion of th MODU	e course, the I <b>LE -2</b>	e student will a	able to:				
COG rammar & Voc	ap <mark>ingalu</mark>	ricenhesie	yodei	kinesz liedzers c	sigførstalad	ngnappropigia	tls sontielre	es with			
- Prepositions -	- Prepositions - GrammaticaledaccuAaccylaadyalserbeveRojmanycept Modald forfication(Blugject										
<b>CO/2</b> rbagreement.	Useco	oherent :	and u	unified parag	graphs with	adequate sug	port and	detail and can			
coveriting : Prince	ciples (	2 topic :	Bicef	larity, vimp	licity, brevi	tycening semenc	e. (BL2)	zationerective			
thoughts -seque	n <b>ring</b> el	th <b>eBildea</b> s	\$)- P	unctuation -	Question f	ormation (Wl	n- questior	ns, Yes or			
<b>CON</b> questions, T	agdude	trstand	thette	rsi(Formalle	s fotormal)	andEscatence	Strandues	e peraptatieing			
of common form	nælt <b>rætte</b>	giænden	olaits f	in quinte/ chan	pgaies/,plaexin	egan andeedit	the text				
60 F	effect	ively.(B	$\frac{SL-2}{2}$	2)	C 1'	<u> </u>	1 . 1	1 1 1			
CO 5	<b>Relat</b>	e the sk	ills a	nd sub skills	sof reading	effectively an riting (BL –	nd provide	knowledge			
1 use the	⊃sign r	<u>e, studen</u> oosts an	nt <u>s en</u> d tra	nsition sign:	als in his/he	er daily life (L	2) 2)				
2 develo	n the k	nowled	ge in	the use of i	nrenosition	and Articles	-, (12)				
3. Know t	the use	the dif	ferer	nt types of te	enses in his	/her convers	(, ation.(12)				
4. Improv	ve the	knowl	edge	grammar	and can b	be able to a	attain the	success in			
compe	etitive e	exams (I	2)	8							
5. attain	the id	ea of ho	ow te	o write the	different t	vpes of lette	rs which	can improve			
his/her writing skills (12)											
6. possess the knowledge of writing and formation of E mails (L2)											
	MODULE 2										
<b>Grammar</b> : A	ctive a	and Pass	sive	Voice – D	irect & Ind	lirect Speech	– Comp	arison of			
Writing:Note I ofparaphrasing-I	Making	g – Sur ementofy	mmai	rizing –Para sandphrases,	agraph Wri	ting – Parap ntencestructur	obrasing:To es.	echniques			



At the end of this Module 3, students are able to:

- 1. Speak or write the sentences either in active form or in passive form.(L2).
- 2. Develop the knowledge of verbal and adjective collocations.(L2).
- 3. Know how to summarize paragraphs.(L2).
- 4. Enhance the writing skills by using the techniques of paragraph writing. (L2).

#### MODULE-4

**Grammar :** Misplaced modifiers – If Clauses – Simple, Compound, ComplexSentences – SpottingErrors.

**Writing :** Dialogue writing (Formal & Informal ) –compareandcontrast paragraphs- Writing ofReviews:Book/ Play/Movie

At the end of the Module 4, students are able to:

- 1. develop the writing skills by using simple compound, complex sentences.(L2)
- 2. spot the error of the writing and speaking skills.(L2)
- 3. make conversations in formal and informal situations.(L2)
- 4. Write the reviews by using good writing skills.(L2)

#### MODULE-5

**Reading Skills :** Types of reading: Skimming, Scanning, Intensive & Extensive Reading – ReadingComprehension-ScrambleSentences-

CompletethepassageusingcontextualcluesIdentifyingMainIdeas using Scanning – Technique Identifying Specific Ideas using Skimming Technique – Studyingthe use of graphic elements in texts to convey information, reveal trends/ patterns/ relationships, communicate processes or display complicated data.

Writing:Describing–ReportWriting:definition-purpose–types– structure-

formal and informal reports-stages indeveloping report-proposal, progress and final reports-examples.

After the completion of this module 5 students are able to:

- 1. gain the knowledge of different types of reading.(L2)
- 2. attain the good writing skills by using skimming and scanning.(L2)
- 3. enhance the idea of getting the information by using pie, cycle, tree, graph, flow charts.(L2)
- 4. write good reports on various incidents of her/his life.(L2)

### Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Grammar, vocabulary	CO1	https://www.youtube.com/watch?v=nQkwdAxF4xA https://www.youtube.com/watch?v=rl85jxktfms
2	Grammar, writing	CO2	https://www.youtube.com/watch?v=XzkbcWh8s4w https://www.youtube.com/watch?v=t6eQAQE1F10



	3	Grammar, writing	CO3	https://www.youtube.com/watch?v=0IFDuhdB2Hk https://www.youtube.com/watch?v=yqyZwm6QDWI							
	4	Grammar, writing	CO4	https://www.youtube.com/watch?v=-ouWOpo2Uh8 https://www.youtube.com/watch?v=RnTpYKOLca4							
_	5	Grammar, writing	CO5	https://www.youtube.com/watch?v=yqyZwm6QDWI							
		I		Total hours: 32 hours							
Te	oxt Ra	ooks.									
. 10		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~								
	1.	Contemporary English	Grammar								
	•	Structures and Composit	ionbyDay	vidGreen, MacMillanIndia, 2014.							
	2.	Effective TechnicalCom	imunicati	onbyAshraf,Mrizvi, LataMcGraw-Hill,2006.							
Refe	erenc	e Book(s):									
	1.	EnglishConversationPr	acticebyC	GrantTaylor, TataMcGrawHill, 2009.							
	2.	PracticalEnglishUsagel	yMichae	lSwan,OUP,4 th Edition.							
	3.	TechnicalCommunicati ss,2009.	onbyMee	enakshiRaman&SangeetaSharma,OxfordUniversityPre							
	4.	EnglishVocabularyinU eUniversityPress,2008.	seAdvanc	edbyMichaelMcCarthy,FelicityO'Dell,Cambridg							
	5.	EnglishforTechnicalCo TataMcGraw-Hill2009	mmunica	tionforEngineeringStudents,AyshaVishwamohan,							
Dnli	ne Re	esources:									
	<u>h</u>	ttps://www.youtube.co	m/watch	<u>?v=nQkwdAxF4xA</u>							
	<u>h</u>	ttps://www.youtube.co	m/watch	?v=rl85jxktfms							
	<u>h</u>	ttps://www.youtube.co	m/watch	?v=XzkbcWh8s4w							
		ttps://www.youtube.co	m/watch	?v=t6eQAQE1F10							
	<u>h</u>		https://www.youtube.com/watch?v=0IFDuhdB2Hk								
	<u>h</u> <u>h</u>	ttps://www.youtube.co	<u>m/watch</u>	<u>?v=0IFDuhdB2Hk</u>							



# NARAYANA ENGINEERING COLLEGE:GUDUR

# Web Resources:

- *Grammar/Listening/Writing1-language.com*
- <u>http://www.5minuteenglish.com/</u>
- <u>https://www.englishpractice</u> .com/Grammar/Vocabulary
- English Language LearningOnline
- <u>http://www.bbc.co.uk/learningenglish/</u>
- <u>http://www.better-english.com/</u>
- BBC Vocabulary Games
- Free Rice Vocabulary Game<u>Reading</u>
- https://www.usingenglish.com/comprehension/
- <u>https://www.englishclub.com/reading/short-stories.htm</u>

### Online Dictionaries

- Cambridge dictionary online :<u>https://dictionary.cambridge.org/</u>
- MacMillan dictionary : <u>https://www.macmillandictionary.com/</u>
- Oxford learner's dictionaries : <u>https://www.oxfordlearnersdictionaries.com/</u>



CO 3

I-B.Tech		CHE	EMISTR	RY LAB	(COMI	MON	TO CSE	E,ECE 8	EEE	(21CH	1501)		R2021	L
Semester		Hours / Week Total Credit Max Marks												
	Ι		Т		Р	ł	nrs	C		CIE		SEE	TO	ГAL
II	0	)	0		3	4	48	1.5	5	40		60	10	00
Pre-requisite: Nil														
Course Objectives: The objective of the laboratory sessions is to enable the learners to get														
hands-on e	xperie	nce o	n the	princi	oles di	scusse	ed in	theory	sessi	ons an	d to	unders	tand the	
applications of these concepts in engineering.														
approation	Course Outcomes: After successful completion of the course, the student will be able													
<b>Course Outcomes</b> : After successful completion of the course, the student will be able												le to:		
<b>CO 1 Determine</b> the cell constant and conductance of solutions														
CO 2	Perf	orm q	uantit	ative a	nalysi	s usin	ig inst	rumen	tal m	ethods				
CO 3	Util	ize the	e funda	imenta	l labor	ratory	techni	iques f	or ana	alyses s	uch as	s titrati	ons, sepa	aration
	purif	ficatio	n and S	spectro	scopy			-		-			-	
CO 4	Ana	lyze a	ınd gai	n exp	erimen	ital sk	till.							
CO-PO Mapping														
СО						Р	0						PS	0
	РО	PO	PO	PO	РО	PO	PO	РО	PO	PO	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													
<u>CO2</u>	3													
<u> </u>	3													
CO4 3														
					1: LOV	v, z-iv	lealun	1, 3- HI	gn					
					COU	2SF (	ONT	FNT						
Tack-1. Fa	timati	on of I	Forrous	Ion h	v usino			Dichro	mata					
1 ask-1. Ls	umativ		CHOUS		y using	, I Ota	Sium	Dicilio	mate					
Objective:	1			6 6				1			1	,•,	<i>.</i>	.1
1. Determ	ine the	e perc	entage	of fe	errous 1	ron 1	n an i	unknov	vn sa	mple b	y red	ox titr	ation wi	th
potassium c	iichroi	nate s	olution	•										CO
2. The stud	ent wil	ll pre-	treat th	e samp	ole to o	btain t	he iro	n in the	e redu	ced (+2	oxida	tion) s	tate.	
3.The stude	ent will	l use a	solutio	on of p	rimary	stand	ard as	the titr	ant					_
Task-2: Co	onduct	ometr	ic titra	tion of	t Weak	acid	vs. Sti	ong ba	ase					
Objective:	-													
1.Pertorm a	i condi	uct me	tric titi	ation of	ot Weal	k acid	with a	t strong	g base	,				CO
2. Determin	the the	equiva	lence p	point of	t the tit	ration	by plo	otting ti	itratio	n curve	using	condu	ictance	
values and a	amoun	t of th	le base	added	during	titrati	on,							
3. State the	advan	tages	conduc	t metr	<u>c titrat</u>	ions.	1							_
<b>1 ask-3 :</b> C	onduc	tomet	ric titra	ation o	1 stron	g acio	l vs. st	rong b	ase					
<b>Objective:</b>	aandı	atom	atmia tit	notion	ofatro		d	o stron	a haa					
1. Perform a conductometric filtration of strong acid with a strong base,														
2. Determine the equivalence point of the thration by plotting titration curve using conductance														
3 State the	values and amount of the base added during titration,													
5. State the advantages conduct metric utrations.														
<b>1 ask-4</b> : Determination of cent constant and conductance of solutions														
<b>Objective:</b>														
1. To deter	mine c	conduc	ctivity of	of the	given w	ater s	ample	. by usi	ing co	nductiv	vity me	eter		CO
h To under		41. a ar	: É .		-			-	-		-			

2. To understand the specific conductance.**Task-5**: Potentiometry - Determination of red-ox potentials and emfs

**Objective:** 1. Determine the concentration of an unknown iron(II) solution. By using potentiometer

Narayana Engineering College :: Gudur (Autonomous)



2. Discuss how the potential changes with relative concentration of oxidised/reduced from,	
oxidizing agent	
4. Determine the equivalence point of the redox titration by plotting titration curve using potential	
change values and amount of oxidizing agent added during titration	
Task-6 : Determination of Strength of an acid in Pb-Acid battery	
Objective:	
1. To determine the half –reactions involved in spontaneous oxidation –reduction reactions.	CO 4
2. Explain the function of the lead storage and dry cell batteries electrolysis involving two	004
lead strips immersed in sulfuric acid.	
<b>Task-7</b> : Preparation of a Bakelite	
Objective: To prepare phenol formaldehyde resin. (Bakelite)	
1. Understand the differences between linear and cross linked polymers.	~~ (
2. Compare and contrast the recycling properties of linear and cross linked polymers.	CO 4
A Define the following terms: polymer, monomer, repeat unit, cross linking, biopolymer	
<b>Task-8:</b> Determination of percentage Moisture content in a coal sample	
Objective:	
<b>1.</b> To provide practical knowledge for developing experimental skill in using desicator to	CO4
estimate moisture content in coal	04
2. Understand percentage of moisture in Coal sample.	
Task-9: Determination of percentage of Iron in Cement sample by colorimetry	
Objective: 1.To use spectroscopy to relate the absorbance of a colored solution to its	
concentration.	CO 2
2. To prepare a Beer's Law Plot to determine the concentration of an unknown.	
Task-10:Estimation of Copper by complexo metric method	
Objective:	
1. Determine the percentage of Copper in an unknown sample by Complex metric titration with	
EDTA solution.	CO 3
2. The student will pre-treat the sample to obtain the Copper in the reduced state.	
3. The student will use a solution of primary standard as the titrant	

Additional Experiments:	
Task-11 : Determination of hardness of ground water sample	
<ul> <li>Objective</li> <li>1. Determine the total hardness (total calcium and magnesium ion concentration).</li> <li>2. Learn how to titrate with EDTA solution.</li> <li>3.Determine permanent hardness and the temporary hardness</li> </ul>	CO1
Task-12: pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base	
Objective:	
1. To perform a pH metric titration of an acidic solution of known molarity.	<b>GO 0</b>
2. To graph the volume of base added vs. the pH and to determine the equivalence point	CO 2
3. To calculate the morality of the basic solution	
Virtual Labs:	
1. <u>http://vlab.amrita.edu/?sub=2&amp;brch=190∼=338&amp;cnt=1</u>	
2. <u>http://vlab.amrita.edu/?sub=2&amp;brch=190∼=339&amp;cnt=1</u>	
3. <u>http://vlab.amrita.edu/?sub=2&amp;brch=190∼=606&amp;cnt=1</u>	
Self-Study:	
Contents to promote self-Learning: Narayana Engineering College :: Gudur (Autonomous)	



SN O	Торіс	CO	Reference
1	Estimation of Ferrous Iron by Dichrometry.	CO 1	https://www.youtube.com/watch?v=LxgZsM huyNM
2	Colorometry	CO 1	https://youtu.be/efIGmPWP-X8
3	Polymer Preparation	CO 4	https://www.youtube.com/watch?v=PSSK5V GcC_0

### Text Book(s):

1.A Textbook of Quantitative Analysis, Arthur J. Vogel.

2. Jain & Jain. Engineering Chemistry: Dhanapathrai Publications., 2015.

3.S.S.Dara, Experiments and Calculations in Engineering Chemistry: S-Chand Publications, Revised Edition, 2008.

### **Reference Book(s):**

- 1. S.K. Bhasin and Sudha Rani, "Laboratory Manual on Engineering Chemistry", Dhanpat Rai Publishing Company, New Delhi, 2nd edition.
- 2. Sunitha Rattan, "Experiments in Applied Chemistry", S.K. Kataria & Sons, New Delhi, 2nd edition.

# Web References:

- 1. https://nptel.ac.in/courses/122101001/23
- 2. https://nptel.ac.in/courses/104103071/39



	NARAYANA ENGINEERING COLLEGE:GUDUR												
I-B.Tech ENGINEERING GRAPHICS (21ES1503) R2021													
Semester	H	Iours / Wee	ek	Total	Credits	Max Marks							
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
II	II 0 1 4 80 3 40 60 100												

**Pre-Requisite:** Basic Mathematics (Geometry)

#### **Course Objectives:**

- 1. To impart skills on using drawing instruments
- 2. To convey exact and complete information of any physical object.
- 3. To Construct Engineering Curves.
- 4. To Learn and practice basic AutoCAD commands.
- 5. To Instruct the utility of drafting & modelling packages in orthographic and isometric drawings

Course Outcomes: At the end of the course, student will be able to:							
CO 1	Define the qualities of precision and accuracy in engineering drawing. (BL-1)						
CO 2	Draw engineering curves with different methods(BL-3).						
CO 3	Develop the orthographic projection of points and straight lines(BL-3)						
CO 4	Construct the planes and simple solids.(BL-3).						
CO 5	Understand and practice basic AUTOCAD commands (BL-2)						

#### **COURSE CONTENT**

	Part. A Manual Drawing								
TASK-1	Introduction and Conic sections	10 Hours							
Introduction to Engin	Introduction to Engineering graphics: Principles of Engineering Graphics and their significance;								
various instruments us	ed, drawing sheet sizes and title block, lettering, BIS convent	tions, types of							
lines and dimensioning	methods.								
Geometrical construction	ons: simple constructions, construction of Pentagon, Hexagon b	by general							
Method only.									
Conic Sections: Type	s of conics: Ellipse, Parabola and Hyperbola (Eccentricity n	nethod only),							
TASK2	Orthographic Projections	10 Hours							
<b>Objectives and Princi</b>	iple of projection, Methods of projections, Comparison betw	een firstangle							
and third angle project	ion.								
Projections of points:	Projection of points placed in different quadrants.								
Projection of straight	z lines: Fundamental concepts, Line parallel, perpendicular ar	nd inclined to							
one and two reference	planes placed in first quadrant only.								
TASK-3	Projections of Solids	15 Hours							
Projections of planes and inclined to one ar Types of solids ; Pol Projections of reg	<b>b:</b> Projection of planes (Triangle, Square, Pentagon, Circle) and two reference planes placed in first quadrant only. by bedra, Solids of revolution, gular solids (Prisms, Pyramids, Cylinders and Cone), w	parallel,Perpendicular ith its axis							

Perpendicular to one plane and parallel to other plane, Axis inclined to one plane and parallel to other plane.



TASK-4	Isometric and Orthographic views	10Hours
Isometric Projections	Principles, Isometric scale, Isometric views, Conventions, Isom	netric views of
lines, planes, simple so	lids (Cube, Cylinder, and Cone), and Conversion of Isometric v	riews to
Orthographic views.		
	Part B Computer Aided Drafting	
TASK-5	Introduction to AutoCAD	17 Hours
Basic drawing and ed	liting commands: line, circle, rectangle, erase, view, undo,	redo, snap, object
editing, moving, copying	ng, rotating, scaling, mirroring, layers, templates, polylines, tri	mming, extending,
stretching, fillets, array	s, dimensions. Dimensioning principles and conventional repres	entations.
TASK-6	Orthographic and Isometric Projections	18 Hours
Transformation of Iso	ometric Projections into orthographic projections such as sin	nple solids such
ascylinder, cone, squar	e prism, pentagonal pyramid	-
Draw 3D model of mec	chanical components such as Stepped block, Bush bearing,	
	Total	hours: 80 hours
Text Book(s):		
<b>1.</b> Bhatt N.D. "E	lementary Engineering Drawing", Charotar Publishers, 2	2014.
2. Shah and Rana,	Engineering Drawing, 2/e, Pearson Education, 2009	
3. K.L.Narayana &	& P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers,	
Chennai,20	12.	
4. Engineering Dr	awing by Dr AVS Sridhar Kumar, Dr. Krishnaiah, T P Vara Pras	sad.
,Spectrum e	ducation, Sun techno Publications, 2019	
<b>Reference Book(s):</b>		
1. Engineering E.French, Ch	Drawing and Graphic Technology -International Edition, Thoma narles J. Vierck, Robert J. Foster, McGraw-Hill, 2014	as
2. Venugopal.K Delhi,2010	C "Engineering Drawing and Graphics", New Age Internation	al (P)Ltd., New



NARAYANA ENGINEERING COLLEGE:GUDUR												]			
I-B.Tec	h	Pyt	hon F	Progra	mmin	g and	Data S	Science	e Lab	(21ES	1508)		R2	021	
Semeste	r	Ho	ours / V	Veek		T	otal	Cred	it		Μ	lax Ma	nrks		
	L		Т		Р	h	nrs	C		CIE		SEE	TO	ГAL	
II	0	)	0		3	4	48	1.5	5	40		60	1	00	
Pre-req	uisite: P	Program	nming	g Knov	vledge										
Course	Objectiv	es:													
1. To	gain knov	vledge	on py	hon pi	ogram	basics	s .								
2. To	o prepare	studen	its for l	ouildin	g prog	grams	using o	control	staten	nents					
3.	To p	repare	studen	ts for s	solving	the p	roblem	is invo	lving f	unctio	ns and	files.			
4.	Tog	gain kr	nowled	ge Py	thon N	umpy	modu	ile to	solve	comple	ex ma	themat	ical pro	blems	
1nvo	olving ma	trices.		<b>C</b> 1				<b>D</b> 1							
<u>5.</u>	Tog	ain Kn	owledg	ge of d	ata cle	aning	using	Pandas	5. 	. 1	1	11 1	1 .		-
Course	Outcom	es: Af	ter suc	cessfu	l com	pletio	n of th	le cour	rse, the	e stude	ent wil	I be at	ble to:		-
	Und	erstan	ding a	nd us	e of py	thon-	Basic	c Conc	cepts(I	BL -2)					-
CO2	Solv	ve the	proble	ms us	ing p	ython	Iterat	ive Sta	ateme	nts(BI	<b>-3</b> )				_
CO3	Und	erstan	d the	conce	ots of t	files, 1	modul	es( <b>BL</b>	2)						
CO4 Solve the Numerical problems that involve Matrices (BL -3)															
CO5 Provide solutions for data cleaning tasks( <b>BL-3</b> )															
					С	O-PC	) Map	ping	/						
						PO	)	<u>r ə</u>					PS	0	
CO	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
		2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	1	2										1		
CO2	2	3	2	2									2	1	
CO3	2	2	3	2	2								3	2	
CO4	2	2	2	1	1								3	2	
					1-Lov	v, 2-M	ledium	, 3- Hi	gh						
					COU	RSE C	CONT	ENT						CC	)
				Tas	<b>k-1</b> - ]	Pytho	n Basi	ics (4	H)						
1. Ru	nning ing	structi	ons in	Intera	octive	intern	reter a	and a I	Pythor	n Scrir	ot				
$2 W_1$	ita a pro	aram		osofu	lly rai	so Inc	lantati	on Er	ror and	d Corr	act it			CO	1
2. W	ite a pro	gram i	to pur		diston	se me	waan		into t	alving	innut	from t	hausar	00	-
J. WI	ite a pro	grann ( on The		ipute (	115tan		ween	two pe	JIIIts ta	aking	mput	1101111	ne usei		
	yinagorea		, orem	)	л.		1 4	р	• 1	1	1	• 6	• • • •		
4. W1	ite a pro	gram	to con	ivert a	Binai	y nur	nber t	o Dec	imal r	umbe	r and	verify	1I 1I 1S	а	
Per	fect num	iber.			<u> </u>		1.0.								
			Ta	isk-2 -	Cond	itiona	al Stat	ement	ts (2 H	l)					
1. Wı	rite a pro	gram (	to dete	ermine	e if a g	iven s	string	is a Pa	lindro	ome or	not				
2. W	rite a pro	ogram	for F	ibona	cci se	quenc	e is g	generat	ted by	addi	ng the	e prev	ious tw	o CO	1
ter	ms by sta	arting	with 1	and	2, the	first 1	0 tern	ns wil	l be: 1	, 2, 3,	5, 8,	13, 21	1, 34, 55	5,	
89,															
				T	ASK-3	- Fur	nctions	s (2 H	)						
1. W1	ite a fun	ction t	hat dr	aws a	Pyran	nid wi	ith # s	vmbol	S						
1	u iuli	2.12011			- jrun			,	~~					CO	2
						#								00	-
					#	# # :	# # #								
					# #	# #	# # #								
2 CH	loose an	v five	huilt.	in etr	ino fu	nction	is of	C land	ງເງິດອ	Impl	ement	t them		ır	
2. 01	n in $D-41$	r $r$ $r$	on al	m su	ot yes	otain -			hon L	inter inter	function	iona	i on you	M1	
OW	n in Pyth	ion. Y	ou sno	Jula n	ot use	sum	g relate	eu Pyt	HOIL D	um-m	runct	ions.		_	
					TASK	-4 -S	trings	( <b>4H</b> )							



1. Write a program to use split and join methods in the string and trace a birthday with	
Dictionary data structure.	CO 2
2. Write a program using map, filter and reduce functions	
TASK-5 - Lists (2H)	
1. Write program which performs the following operations on lists. Don't use built-in	
functions	
a) Updating elements of a list	CO 2
b) Concatenation of list's	
c) Check for member in the list	
d) Insert into the list	
e) Sum the elements of the list	
f) Push and pop element of list	
g) Sorting of list	
h) Finding biggest and smallest elements in the list	
i) Finding common elements in the list	
TASK-6 - Files (4H)	
1 Write a program to read the file content and count the number of yowels, conservate	
1. White a program to read the file content and count the number of vowers, consonants, digits and special characters in a given file	CO2
2 Write a program to perform the following operations in Files:	COS
a Copy from one file to another file	
b Merge two files	
TASK-7 Introduction to Numpy (4 H)	
1 Write a NumPy program to compute the outer product of two given vectors	
2. Write a Numpy program to compute the determinant of a given square array	CO4
2. Write a rumpy program to compute the determinant of a given square array.	0.4
TASK-8 - Introduction to Numpy (2H)	
1. Write a Numpy program to calculate the difference between the maximum and	
the minimum values of a given array along the second axis.	
Expected Output:	CO 4
Original array:	
[[ 0 1 2 3 4 5]	
[ 6 7 8 9 10 11]]	
Difference between the maximum and the minimum values of the said array:	
[5 5]	
TASK-9 - Introduction to Pandas (4 H)	
1 Write a Pandas program to convert a Panda module Series to Python list and it's	
type	CO 5
2 Write a Pandas program to display most frequent value in a given series and	005
replace everything else as 'Other' in the series	
TASK-10 - Introduction to Pandas (4 H)	
1. Write a Pandas program to identify the column(s) of a given DataFrame which	CO 5
have at least one missing value.	
2. Write a Pandas program to replace NaNs with a single constant value in specified	
columns in a DataFrame	
	<u> </u>
ADDITIONAL EXPERIMENTS	
	1

ADDITIONAL EXPERIMENTS	
TASK – 11 – Lists, Strings, Tuples	
1. Write a python programs on lists	
	-



2. Write a python program on strings	CO2
3. Write a python program on tuples	
TASK – 12 - Pandas	
1. Write a Pandas program to interpolate the missing values using the Linear Interpolation method in a given DataFrame.	CO5
2. Write a Pandas program to import excel data (coalpublic2013.xlsx) into a Pandas DataFrame.	

#### Virtual Labs

#### Python Lab (IIT Bombay) :

- 1. <u>http://vlabs.iitb.ac.in/vlabs-dev/labs/python-basics/experimentlist.html</u>
- 2. <u>https://pythoninstitute.org/free-python-courses/?gclid=EAIaIQobChMI4u7Uw-</u> m72wIVTP0rCh0CVw2EEAAVAiAAEgL5CPD_PwE

mZ8w1V1R0rCh0CYw2FEAAYA1AAEgi	<u>L3GPD_BWE</u>									
List of Experiments										
1. Arithmetic Operations	6. Classes and Objects									
2. Built-in Functions	7. Built-in Modules									
3. Loops	8. Constructors and Inheritance									
4. Data Types	9. Numpy basics.									
5. Strings	10. Pandas									

#### Text Book(s):

- 1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson, 2017
- 2. Learning Python, Mark Lutz, Orielly, 5th Edition, 2013

### **Reference Book(s):**

- 1. Think Python, Allen Downey, Green Tea Press, 2nd Edition
- 2. Core Python Programming, W.Chun, Pearson, 2nd Edition, 2007
- 3. Fundamentals of Python, Kenneth A. Lambert, Cengage Learning, 1st Edition, 2015
- 4. R. Nageswara Rao, "Core Python Programming", 2nd edition, Dreamtech Press, 2019
- 5. Allen B. Downey, "Think Python", 2ndEdition, SPD/O'Reilly, 2016
- 6. Martin C.Brown, "The Complete Reference: Python", McGraw-Hill, 2018.
- 7. Michael Dawson, —Python Programming for absolute beginners, 3rd Edition, CENGAGE Learning Publications, 2018.
- 8. Taming Python by Programming, Jeeva Jose, Khanna Publishing House, 1st Edition, 2018
- 9. Introduction to Computing and Problem Solving with Python, J. Jose, Khanna Publications, 1st Edition, 2019.
- 10. Guido Van Rossum and Fred L. Drake Jr, "An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.

## Web References:

- 1. https://www.tutorialspoint.com/python/index.htm
- 2. https://www.w3schools.com/python/
- 3. https://www.javatpoint.com/python-tutorial
- 4. https://www.geeksforgeeks.org/python-programming-language/



	NAR	AYANA	ENGIN	IEERIN	G COL	LEGE:G	UDUR				
I-B.Tech		Ε	nglish Lan	guage Lat	) (21EN15	01)		R2021			
Semester	Hours / Week		Hours / Week Total Credit					rks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II	0	0	3	48	1.5	40	40 60 100				
<b>Course Outcomes</b> : After successful completion of the course, the student will be able to:											
cor	knowled	lge of E iation.	English p	honetics	and pho	nology to	improve	their own			
CO2	Recogni groups audience	<b>ize and u</b> and Spea e.	se pitch j k confide	patterns t ntly and	to signal of intelligibl	complete a ly within	nd incomp groups an	plete thought d before an			
CO3	Learn, presenta	<b>practice</b> tion with	and ac clarity and	quire the enable the	e skills em to prej	necessary pare resume	to delive e with cov	er effective, er letter.			
				CO-PO	) Mappii	ng					

CO	РО													PSO	
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	
CO1									2	3					
CO2									3	2					
CO3									3	3					

# TASK - 1

Introduction to Phonetics: Introduction to Sounds of Speech - Vowels - Consonants.

**Practice-1:** Listening Sounds of Speech – Vowels – Consonants with a focus on pronunciation **Practice-2:** Highlighting the sounds of Vowels and Consonants

# TASK – 2

Syllabification: Word Stress, Rules of word stress

Practice-3: Practice on Intonation and Stress

# TASK - 3

Listening Skills: Types of Listening Skills- Active listening and anticipating the speaker

Practice-4: Listening for Specific & General Details

Practice-5: Listening Comprehension

# TASK – 4

Defining & Describing: Objects, Places and Events - Video Speech Writing- Review (Oral) (Books / Movies / Products..etc.,)

Practice-6: Describing: Objects and Places

Practice-7: Describing: Events and Process Narayana Engineering Goldege .: Gudur (Autonomous)



Practice-8: Review (Oral) : Books / Movies / Products..etc.,

**Practice-9:** Video Speech Writing

### TASK - 5

Reading Comprehension- Information Transfer.

**Practice-10:** Reading practice for practice of Pronunciation – understanding;

Practice-11: writing paragraph- graphs, flow charts, diagrams - Information Transfer

# TASK – 6

Giving and Asking Directions - Poster Presentation

Practice-12: Giving and Asking Directions



# SEMESTER III

Course Code	egory	Course Title	Course Title			ods per	edits	Scheme of Examination Max. Marks			
	Cat		L	Т	Р	Total	Cr	Int. Marks	Ext. Marks	Total Marks	
21MA1006	BS	Probability Statistics and Numerical Methods	3	0	0	3	3	40	60	100	
21ES1009	ES	Data Structures and Algorithms	3	0	0	3	3	40	60	100	
21ES1010	ES	Electronic Devices and Circuits	3	0	0	3	3	40	60	100	
21EE2001	PC	DC Machines and Transformers	3	0	0	3	3	40	60	100	
21EE2002	PC	Electrical Circuit Analysis	2	0	0	2	2	40	60	100	
21EE2003	PC	Power System Architecture	3	0	0	3	3	40	60	100	
21ES1513	ES	Data Structures and Algorithms Lab	0	0	3	3	1.5	40	60	100	
21ES1514	ES	Electronics Devices and Circuits Lab	0	0	2	2	1	40	60	100	
21CD6001	SC	Career competency Development I	0	0	2	2	1	40	60	100	
21CC6001	SC	Value added course/Certificate course I	0	0	0	0	1	40	60	100	
21MC8002-13	MC	Mandatory course II	2	0	0	2	0				
		Counseling/Mentori ng	0	0	1	1	0				
		Sports/Hobby Clubs/Activities	0	0	2	2	0				
		Activity Point Programme		D	ouring t	he Semes	ter		20 Points		
		Total	19	0	10	29	21.5	400	600	1000	



II-B. Tech <b>PROBABILITY STATISTICS AND NUMERICAL METI</b>	ĸ										
	HODS	R-	2021								
Semester Hours / Week Total Credit	Max Ma	arks									
I L T P hrs C CIE	SEE	TC	DTAL								
20MA1006 3 0 0 48 3 40	60	1	100								
Pre-requisite: inter mathematics											
Course Objectives: This course aims to providing the knowledge for the	student a	bout or	n								
1. The theory of Probability Distributions is used to Determine the e	expected [*]	values	and								
analysis the data.											
2. The Statistical methods used to test the product under the specific	cations or	not.									
3. To solving an algebraic and transcendental equations by applying V	arious nu	merica	1								
methods.											
4. To interpolating the values through the polynomials.											
5. To evaluation of integral values through the numerical methods.											
6. To solve ordinary differential equations through the numerical m	ethods.										
· · · · · · · · · · · · · · · · · · ·											
<b>Course Outcomes</b> : After successful completion of the course, the student y	vill able to	o:									
<b>CO 1</b> Apply the probability distributions in life testing, expected failures for various engineering											
applications. (L-3)											
<b>CO 2</b> Test the data by applying large samples inferential techniques. (L-4)											
<b>CO 3</b> Test the data by applying small samples inferential techniques.			(L-4)								
<b>CO 4</b> solve algebraic and transcendental equations and interpolate the t	rend value	e	(L-3)								
<b>CO 5</b> To Solve ordinary differential equations by using numerical methods.	nods		(L-3)								
CO-PO Mapping			( )								
PO		Р	SO								
CO POI PO P	O PO	PSO	PSO								
	1 12	1	2								
CO1 3 3 2											
<b>CO2</b> 3 3 2 2											
<b>CO3</b> 3 3 2											
<b>CO4</b> 3 3 2											
CO5         3         3         2         1											
1- Low, 2-Medium, 3- High											
COURSE CONTENT											
		Hour	s:10								
MODULE – 1 Random Variables and Probability Distribution	S	HUUI									
MODULE – 1Random Variables and Probability DistributionBasics concepts of Probability, Random variables, Expectation–Distribution	s screte an	id con	tinuous								
MODULE – 1Random Variables and Probability DistributionBasics concepts of Probability, Random variables, Expectation–DiDistributions, Distribution function. Binomial, Poisson, Normal and Ex	s screte an aponentia	d con	tinuous oution–								
MODULE – 1Random Variables and Probability DistributionBasics concepts of Probability, Random variables, Expectation–DiDistributions, Distribution function. Binomial, Poisson, Normal and ExRelated properties (without proof).	screte an screte an sponentia	l distril	tinuous bution–								
MODULE – 1Random Variables and Probability DistributionBasics concepts of Probability, Random variables, Expectation–DiDistributions, Distribution function. Binomial, Poisson, Normal and ExRelated properties (without proof).At the end of the Module 1, students will be able to:	screte an xponentia	l distril	tinuous bution–								
MODULE – 1Random Variables and Probability DistributionBasics concepts of Probability, Random variables, Expectation–DiDistributions, Distribution function. Binomial, Poisson, Normal and ExRelated properties (without proof).At the end of the Module 1, students will be able to:5. Apply the probability basic concepts to predict some information.	screte an aponentia	l distril	tinuous bution– (L-3)								
MODULE – 1Random Variables and Probability DistributionBasics concepts of Probability, Random variables, Expectation–DiDistributions, Distribution function. Binomial, Poisson, Normal and ExRelated properties (without proof).At the end of the Module 1, students will be able to:5. Apply the probability basic concepts to predict some information.6. Acquire the knowledge about classification of the variables	screte an ponentia	l distril	tinuous bution– (L-3)								
MODULE – 1Random Variables and Probability DistributionBasics concepts of Probability, Random variables, Expectation–DiDistributions, Distribution function. Binomial, Poisson, Normal and ExRelated properties (without proof).At the end of the Module 1, students will be able to:5. Apply the probability basic concepts to predict some information.6. Acquire the knowledge about classification of the variables	screte an aponentia	l distril	tinuous bution– (L-3)								
MODULE – 1Random Variables and Probability DistributionBasics concepts of Probability, Random variables, Expectation–DiDistributions, Distribution function. Binomial, Poisson, Normal and ExRelated properties (without proof).At the end of the Module 1, students will be able to:5. Apply the probability basic concepts to predict some information.6. Acquire the knowledge about classification of the variables(L-3)7. To find the expected and variance values	screte an aponentia	l distril	tinuous bution– (L-3)								
MODULE – 1Random Variables and Probability DistributionBasics concepts of Probability, Random variables, Expectation–DiDistributions, Distribution function. Binomial, Poisson, Normal and ExRelated properties (without proof).At the end of the Module 1, students will be able to:5. Apply the probability basic concepts to predict some information.6. Acquire the knowledge about classification of the variables(L-3)7. To find the expected and variance values.	screte an aponentia	l distri	(L-3)								
MODULE – 1Random Variables and Probability DistributionBasics concepts of Probability, Random variables, Expectation–DiDistributions, Distribution function. Binomial, Poisson, Normal and ExRelated properties (without proof).At the end of the Module 1, students will be able to:5. Apply the probability basic concepts to predict some information.6. Acquire the knowledge about classification of the variables (L-3)7. To find the expected and variance values.8. Apply an appropriate probability distribution to the given data.	screte an ponentia	l distril	(L-3) (L-3) (L-3)								

MODULE -2

Large Sample Tests

Hours:10


Population and S sampling, Critica large sample tes Confidence interv	Sample - Null and Alternative hypothesis - Level of significal region, one tailed and two tailed tests, Procedure for testing sts for single mean, two means and single proportion, two val for mean and proportions.	cance, Errors of g of hypothesis, wo proportions,
At the end of the Mo	odule 2 students will be able to:	
1  Annly the terms	esting of hypothesis techniques, to decide the product is good or had	(I -3)
2. How much of	of sample size is required for testing	(L-1)
3. Determine t	he control limits for the product.	(L-3)
4. Select appro	oppriate test statistic to analysis the data.	(L-3)
MODULE-3	Small Sample Tests	Hours:8
t-test for single n sample variance	nean, difference of two means and paired t-test, F-test and Chitest, testing of goodness of fit and independence of attributes.	-square test one
At the end of the Mo	odule 3, students will be able to:	
5. Determine t	he product came from same company or not.	(L-3)
6. Applying t-t	test techniques, to determine the experimentation useful or not	(L-3)
7. Use the chi-	square test techniques to select the appropriate distribution	(L-3)
8. Applying th	e chi-square test to test whether the attributes are independent or not	(L-3)
MODULE-4	Solution of Algebraic, Transcendental Equations &	Hours:10
	Interpolation	
Introduction-Bise differences-Newt	ection method, Regula-falsi method, Newton Raphson ton's forward and backward interpolation formulae – Lagrange	method, Finite 's formulae.
At the end of the Mo	odule 4, students will be able to:	
1. Solve an alg	bebraic or transcendental equation using an appropriate numerical me	thod. $(L-3)$
2. Understand	the use of different operators in interpolation.	(L-2)
3. Find interpo	blating polynomials using Newton's forward and backward formulae.	(L-2) (L-2)
4. Understand	the theoretical and practical aspects, the use of numerical methods.	(L-2)
MODIII F-5	Numerical integration & Solution of ordinary differential	Hours:10
WIODULE-5	equations	110015.10
Numerical Integr solution of Ordin successive Appro At the end of the Mo	ration: Trapezoidal rule – Simpson's 1/3 Rule – Simpson's 3/8 nary Differential equations: Solution by Taylor's series-Pica oximations-Modified Euler's Method- Runge-Kutta Method. odule 5, students will be able to:	Rule Numerical rd's Method of
<ol> <li>Apply nume</li> <li>Understand applications</li> <li>Work out nu</li> <li>Apply Rung</li> </ol>	erical differentiation and integration techniques to various engineerin the techniques of Trapezoidal rule, Simpson's 1/3 Rule, Simpson's 3 umerical differentiation whenever and wherever routine methods are ge-kutta method in engineering problems	g problems. (L-3) //8 Rule and its (L-2) not (L-1) (L-3)
	Total h	ours 48
Content beyond s	yllabus:	I

- Analysis variance.
   lognormal distribution.
- 5. regression analysis .



# Self-Study:

Contents to promote self-Learning:

Content	s to promote sen-Learning.		
SNO	Торіс	СО	Reference
1	Probability distribution	CO1	https://www.youtube.com/watch?v=6x1pL9Yov1k
2	Large sample tests	CO2	https://www.youtube.com/watch?v=80YzzIm8NK8
3	Small sample tests	CO3	https://www.youtube.com/watch?v=c5YTyGWpcmw
4	Solution of Algebraic and Transcendental Equations	CO4	https://www.youtube.com/watch?v=apuEXUAntJo
5	Numerical Integration and solution of Ordinary differential equations	CO5	https://www.youtube.com/watch?v=0rtaUUonwkU https://www.youtube.com/watch?v=QugqSa3Gl-w

#### Text Book(s):

- 3. Iyengar T.K.V., Krishna Gandhi B. & Others., (2013), Numerical Methods, Second Revised Edition, New Delhi, S.Chand & Co.Ltd.
- 4. Miller and Freund's, Probability and Statistics for Engineers, 8/e, Pearson, 2016.
- 5. 3. S.S. SASTRY, Introductory Methods of Numerical Analysis, 5/e, PHI learning private limited, 2012.
- 6. B S Grewal, Higher Engineering Mathematics, 44th Edition, New Delhi, Khanna Publications, 2017.

#### **Reference Book(s):**

- 4. S. Ross, a First Course in Probability, Pearson Education India, 10th editon,2018.
- 5. Fundamentals of Mathematical Statistics" SC Gupta and V K Kapoor ,2016.
- 6. W. Feller, An Introduction to Probability Theory and its Applications, Wiley, 2019.

# Online Resources/ Web References:

- 7. <u>https://www.vfu.bg/en/e-Learning/Math_Soong_Fundamentals_of_probability and</u> <u>statistics for engineers.pdf</u>
- 8. <u>http://www.math.ust.hk/~machas/numerical-methods.pdf</u>
- 9. https://www.khanacademy.org/math/statistics-probability
- 10. http://www.randomservices.org/random/dist/index.html
- 11. <u>https://global.oup.com/uk/orc/biosciences/maths/reed/01student/numerical_tutorials/pdf</u>



NARAYANA ENGINEERING COLLEGE::GUDUR														
II-B.Tech	II-B.TechDATA STRUCTURES AND ALGORITHMS (21ES1009)R2021													
Semester	Но	Hours / Week Total hrs Credit Max Marks												
	L T P C CIE SEE													
Ι	3 0 0 48 3 40 60 100													

	COURSE CONTENT	
MODULE – 1	Introduction to Data Structures	9H
<b>Introduction:</b> Overview	of Data Structures, Implementation of Data Structures	ures, Algorithm
Specifications, Analysis o	f an Algorithm, Asymptotic Notations, Time-Space tra	de off, Arrays.
<b>Searching:</b> Introduction, B complexities.	Basic Terminology, Linear Search and Binary Search Tech	niques and their
MODULE – 2	Stacks and Queues	9H
Stacks: Introduction, Repr	esentation of a Stack, Stack Operations, Applications of	Stacks. Queues:
Introduction, Representation	n of a Queue, Queue Operations, Various Queue Structures:	Circular Queue,
Double Ended Queue, Prior	ity Queue, Applications of Queues.	
MODULE – 3	Linked Lists and Sorting	10H
Introduction, Singly linked Applications of Linked Lists Sort, Quick Sort	lists, Doubly Linked Lists, Circular Linked Lists, Linked Stac s. <b>Sorting:</b> Introduction, Bubble Sort, Selection Sort, Insertio	cks and Queues, on Sort, Merge
MODULE – 4	Trees	10H
Introduction, Basic Term operations on a Binary Tre	ninologies, Definition and concepts, Representation o e, Binary Search Tree, Height balanced Binary Tree, B Tr	f Binary Tree, ees.
MODULE – 5	Graphs & Hashing	10H
Graphs: Introduction, Graph	n Terminologies, Representation of Graphs, Graph Operation	s, Shortest Paths,
Topological Sorting, Minim	um Spanning Trees – Kruskal's and Prim's algorithms. Hash	ing: Introduction
to Hash Table, Static Hashin	ng, Dynamic Hashing.	
	Total hours:	48 hours



# **TEXTBOOK:**

- 1. D. Samanta, **Classic Data Structures**, 2nd Edition, Prentice-Hall of India, Pvt. Ltd., India, 2012.
- 2. Ellis Horowitz and Sartaj Sahni, **Fundamentals of Data Structures in C**, 2nd Edition, Universities Press, 2008.

# **REFERENCES:**

- 1. Data Structures A Pseudo code Approach with C, Second Edition by Richard F. Gilberg, Behrouz A. Forouzan, Cengage Learning.
- 2. Data Structures and Algorithms Using C++ by Ananda Rao Akepogu, Radhika Raju Palagiri, Pearson, 2010.
- Data Structures and Algorithms Made Easy by Narasimha Karumanchi, Careermonk Publications, 2016
- 4. Peter Bras, "Advanced Data Structures", Cambridge University Press, 2014
- 5. Data Structures, RS Salaria, Khanna Publishing House, 3rd Edition, 2017
- 6. Data Structures through C, Yashwant Kanetkar, BPB Publications, 3rd Edition, 2019
- 7. Expert Data Structures with C, RB Patel, Khanna Publications, 2019



10h

# **ELECTRONIC DEVICES AND CIRCUITS (21ES1010)** SEMICONDUCTOR DIODES **MODULE-1** 10h Semiconductor diode: Principle and structure of PN junction diode, Open circuited PN junction diode, Energy band diagram of PN diode, Diode current equation, Volt-Ampere characteristics, Temperature dependence of Volt-Ampere characteristics, Diode capacitance. Special semiconductor devices: Principle of operation and characteristics of Varactor diode, Tunnel diode, Photo diode, LED, SCR. **MODULE-2 RECTIFIERS & FILTERS** 10h Diode applications: P-N junction diode as a rectifier - Half wave rectifier, Full wave rectifier, Bridge rectifier, Rectifier parameters, Harmonic components in rectifier circuits, Clippers and clampers (Qualitative Treatment only) filters: Inductor filters, Capacitor filters, L- section filters, $\pi$ - section filters, Bleeder resistor. **MODULE-3 BIPOLAR JUNCTION TRANSISTOR** 9h Bipolar junction transistor: Construction, Principle of operation, Transistor current components, Transistor configurations, Transistor h-parameter model, Calculation of h-parameters from characteristics, Transistor as a switch, TRansistor as an amplifier.

NARAYANA ENGNEERING COLLEGE::GUDUR

**MODULE-4** 

#### **TRANSISTOR BIASING**

Transistor Biasing: Need for biasing, Operating point, Load line analysis, Stabilization against variations in  $I_{CO}$ ,  $V_{BE}$  and  $\beta$ , Biasing and stabilization techniques: Fixed bias, Collector to base bias, Voltage divider bias, Bias compensation techniques, Thermal runaway, Heat sink and thermal stability.

# MODULE-5 METAL OXIDE SEMICONDUCTOR FIELD-EFFECT TRANSISTOR 9h

MOSFET: Construction of depletion mode and enhancement mode of NMOS and PMOS, Drain characteristics of MOSFET, Transfer characteristics of MOSFET, MOSFET as a switch, CMOS inverter and it's characteristics.

# **Text Book(s):**

1. J. Milliman and C Halkias, "Integrated electronics", 2nd edition, Tata McGraw Hill, 1991.

2. Donald A Neamen, "Electronic Circuits – analysis and design", 3rd edition, McGraw Hill (India), 2019.

# **Reference Book(s):**

1. Behzad Razavi, "Microelectronics", Second edition, Wiley, 2013.

2. R. L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits," 9th Edition, Pearson, 2006.

# NARAYANA ENGINEERING COLLEGE:GUDUR



II-B.Te	ech		DC MAC	HINES AND	O TRANSFC	ORMERS (21	EE2001)		R2021				
Semest	er	Н	ours / Wee	k	Total	Credit		Max Mar	rks				
	ſ	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
Ι		3	0	0	48	3	40	60	100				
Pre-rec	quisit	te: Nil											
Course	Obj	ectives:											
1.	To	understan	d the cons	tructional	features c	of DC macl	nines.						
2.	To	understan	d the pher	omena of	armature	reaction a	nd commut	ation.					
3.	To	understand the characteristics and parallel operation of dc machines.											
4.	То	understand the methods for speed control of DC motors and applications of DC											
_	mot	ors.			. 1								
5.	То	understan	id the var	ious types	s of losse	s that occu	irs in DC	machines	and how to				
_	calc	culate effic	nency.		<b>C</b>	c · 1		C					
6.	To	understan	d the cons	tructional	features c	of a single j	phase trans	stormer.					
7.	Тот	understand	the effici	ency and v	voltage re	gulation of	a transfor	mer.					
8.	То	understan	d the Aut	otransforn	ners Cons	struction &	c Compari	son with	two winding				
0	tran	istormer.		1	C		C	· 1	<i>.</i> •				
9.	10 S	suggest a s	suitable thi	ree phase	transforme	er connecti	on for a pa	irticular oj	peration.				
10.			i the tap cl	langing of	transform	ners.							
Course	Out	Comes: An	ter success	different		ie course, t	ne student		ne to:				
01		DC mach	istruction,	different	phenomer	la like: arti	lature reac	tion, com	inutation in				
<u> </u>		Understei	nd about d	ifforant tu	mag of da	aanaratara	and signif	iconco of	000				
		Develop			pes of de								
CO 3		Develop		cal relatio	ons for tor	que develo	pea by ac	motor and	learn about				
		speed – to	forment to at	acteristics	de of de re	achines of		r. Gain ki	iowledge of				
<u> </u>		Identifier	tion of 1	ng metno	us of ac m	acmines.	a transfor						
			mon or ph	ysical com	i i i	single pha	se transfor	mer.					
CO 5		Learn dif	terence be	tween two	o windings	s and auto	transforme	rs.					
		Identifica	tion of the	ee phase t	ransforme	ers circuits.	•						

	CO-PO Mapping													
СО		PO PSO												
	PO	O PO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	2		2				1	1	2	2	1
CO2	2	2	2	2		2				1	1	2	1	2
CO3	2	2	2	2		2				1	1	2	2	1
CO4	2	3	3	2		2				1	1	2	2	1
CO5	3 3 3 3 2 1 1 2 1 2													
					1: Lov	<i>N</i> , 2-M	ledium	, 3- Hi	gh					

# **COURSE CONTENT**

# MODULE – 1

Principle of Electromechanical Energy Conversion, Energy balance equation, Introduction to DC Generator, principle of operation, Construction details, Design of Armature winding, E.M.F Equation- Numerical problems. Armature Reaction- Cross Magnetizing and De-Magnetizing AT/Pole, Compensating Winding, Commutation, Reactance Voltage, Methods of Improving Commutation.

At the end of the Module 1, students will be able to:

- Able to understand the electromechanical energy conversion system
- Able to understand the construction, operation and armature windings of a DC generator
- Able to understand the Armature Reaction & Commutation



# MODULE -2

Methods of Excitation – Separately Excited and Self Excited Generators, Build-Up of E.M.F -Critical Field Resistance and Critical Speed, Causes for Failure to Self Excite and Remedial Measures, Characteristics & Applications of Generators.

Parallel Operation of D.C shunt Generators, Series Generators-Use of Equalizer Bar and Cross Connection of Field Windings – Load Sharing.

At the end of the Module 2, students will be able to:

- Able to analyze the types of DC generators
- Able to analyze the characteristics of DC generators
- Able to understand the Parallel of operation of DC generators

# MODULE-3

D.C Motor – Principle of Operation, Back Emf, Torque and power developed by armature, Types, Characteristics and Applications of dc Motors, speed control of DC motors(Armature control and Flux control methods), Necessity of starters, constructional details of 3-point and 4-point starters, Calculation of Starter Steps for D.C Shunt Motors.

Power stages in a dc machine, Losses – Constant & Variable Losses, Calculation of Efficiency, Condition for Maximum Efficiency & Numerical Problems. Methods of Testing - Brake Test, Swinburne's Test, Hopkinson's Test, Field's Test, Retardation Test.

At the end of the Module 3, students will be able to:

- Analyze the types of DC motors
- Analyze the characteristics & speed control of DC motors.
- Able to understand the calculation of starter resistance in steps.
- Analyze Power stages and types of losses in a DC machines.
- Able to understand the calculation of Efficiency in DC machines.
- Able to Analyze the testing of DC machines.

# **MODULE-4**

Principle, construction and operation of single-phase transformers, EMF equation, equivalent circuit, phasor diagrams(no load and on load), losses and efficiency, voltage regulation, All Day Efficiency, Testing -open circuit, short circuit tests & Sumpner's test, separation of hysteresis and eddy current losses. Parallel operation of single-phase transformers.

At the end of the Module 5, students will be able to:

- Able to understand the construction & operation of transformer
- To predetermine the efficiency and voltage regulation of a transformer
- Able to understand the parallel operation of single phase transformers.

# MODULE-5

Autotransformers-construction, principle, applications and comparison with two winding transformer. Three-phase transformer – construction, types of connection and their comparative features, Phase conversion - Scott connection, Tap-changing transformers - No-load and on-load tap changing of transformers.

At the end of the Module 6, students will be able to:

- Able to understand the Autotransformers
- Able to understand and analyze the phase conversions
- Analyze the tap changing of transformers

Total hours:60 hours

Term work:

DC Machines- Lab & Transformers- Filed Work



#### **Content beyond syllabus:**

- 1. Advanced Speed control techniques for DC Motors.
- 2. Zigzag/star and V/V connections in a 3-Phase Transformers

#### Self-Study:

#### Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	DC Machines		
	Introduction &	CO1	https://nptel.ac.in/courses/108/102/108102146/
	Constructional features		
2	DC Generator	<u> </u>	https://www.youtube.com/watch?y-TaZiy.sy.jo
	Characteristics	02	https://www.youtube.com/watch?v=razjv_sy_jo
3	DC Motor	CO3	https://www.youtube.com/watch?v=GQatiB-JHdI
4	Testing of DC Machines	CO4	https://www.youtube.com/watch?v=8WCbTZPjcTE
5	Transformers	CO5	https://nptel.ac.in/courses/108/105/108105155/
6	Auto Transformers	CO6	https://www.youtube.com/watch?v=lltVwhoPvh0

#### Text Book(s):

1. Electrical Machinery, P.S. Bimbhra, Khanna Publishers, 7th Edition, 2011.

2. Electrical Machines, S K Bhattacharya, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition, 2014, 3rd Reprint 2015.

3. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

#### **Reference Book(s):**

1..Electric Machines 4th edition, D.P.Kothari and I.J. Nagrath, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition, 2010, 16th Reprint 2015.

2.A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.

3. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

#### **Online Resources:**

- 1. <u>http://175.101.102.82/moodle/</u>
- 2. https://www.accessengineeringlibrary.com/

3. https://www.slideshare.net/

4. https://easyengineering.net/electrical-machinery-by-bimbhra/

5.https://books.google.co.in/books?id=dh_gDwAAQBAJ&lpg=PR1&dq=electrical%20machines%20by%20 kothari%202020&pg=PR8#v=onepage&q&f=false

## Web Resources:

- 1. https://electrical-engineering-portal.com/
- 2. <u>https://www.electrical4u.com/</u>

3. http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/Sadhya/experimentlist.html

4. https://www.engineering.com/



NARAYANA ENGINEERING COLLEGE:GUDUR														
II-B.Tech	TechElectrical Circuit Analysis (21EE2002)R2021													
Semester		Но	ours / V	Veek		Т	otal	Credi	t		М	lax Ma	rks	
	L	,	Т		Р	h	nrs	C		CIE		SEE	TO	ГAL
Ι	3	3	0		0	4	48	3		40		60	1	00
Pre-requis	uisite: Nil													
Course Ob	bjectives:													
1. To know	w the analysis of three phase balanced and unbalanced circuits and to measure active and													
reactive pow	active powers in three phase circuits.													
2. Knowing	nowing how to determine the transient response of R-L, R-C, R-L-C series circuits for D.C and													
A.C excitati	excitations.													
3. To introduce the various two-port networks parameters for a given circuit.														
4. To evaluation of poles and zeros of a given transfer function.														
5. To study	5. To study the different types of filters													
Course Ou	tcom	es: Af	ter suc	cessfu	l com	pletio	n of th	e cour	se, th	e stude	ent wil	l be ab	ole to:	
CO 1	Unde	erstand	d the a	nalysis	ofthre	ee pha	ase bal	anced	and u	nbalan	ced cir	cuits.		
CO 2	Solve	e the p	roblen	ns in D	C trans	ient re	espons	se for t	he giv	en circ	uit.			
CO 3	Solve	e the p	roblen	ns in A	C trans	sient re	espons	e for th	ne giv	en circu	lit.			
CO 4	Analy	yze the	e given	netwo	ork usir	ng diff	erent 1	two po	rt net	work p	arame	ters.		
CO 5	Expl	ain abo	out the	funda	mental	and ty	pes of	filters						
<u></u>					С	<u></u>	Man	ning						
CO						<u> </u>	0	<u>p</u>					PS	0
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2									3	3
CO2	3	3	3	2									3	3
CO3	3 3 3 2 3 2													
CO4	3	3	3	2									1	2
CO5	2	2	3	2									2	1
					1: Lov	v, 2-M	ledium	n, 3- Hi	gh					

#### **COURSE CONTENT**

# MODULE – 1

# **Balanced Three phase circuits**

Three phase circuits: Phase sequence- Star and delta connection-Relation between line and phase voltages and currents in balanced systems-Analysis of balanced three phase circuits-Measurement of Active and Reactive power in balanced Three phase systems.

# Unbalanced Three phase circuits

Analysis of Three Phase unbalanced circuits-Loop Method- Application of Millman's Theorem-Star Delta Transformation Technique – Two Wattmeter Method of measurement of three phase power, Advantages of Three Phase System.

At the end of the Module 1, students will be able to:

- 1. Explain about advantages of  $3-\phi$  circuits over  $1-\phi$  circuits
- 2. Distinguish between balanced and unbalanced circuits
- 3. Explain the phasor relationships of voltage, current, power in star and delta connected.
- 4. Measure the active, reactive powers in balanced circuits
- 5. Understand the analysis of unbalanced circuits and power calculations

## MODULE-2

#### Transient Analysis

Transient Analysis in DC and AC circuits Transient response of R-L, R-C, R-L-C circuits for DC



excitations, Solution using differential equations and Laplace transforms.

At the end of the Module 2, students will be able to:

- 1. Distinguish between classical method and Laplace transform approach in analysing transient phenomenon in DC excitations
- 2. Distinguish between classical method and Laplace transform approach in analysing transient phenomenon in sinusoidal excitations

#### MODULE-3

Transient Analysis in DC and AC circuits Transient response of R-L, R-C, R-L-C circuits for AC excitations, Solution using differential equations and Laplace transforms.

At the end of the Module 3, students will be able to:

- 9. Distinguish between classical method and Laplace transform approach in analysing transient phenomenon in AC excitations
- 10. Distinguish between classical method and Laplace transform approach in analysing transient phenomenon in sinusoidal excitations

# MODULE-4

Two Port Network Parameters: Impedance, Admittance, Transmission and Hybrid Parameters and their relations, reciprocity and symmetry conditions, concept of transformed network, Two Port Network parameters using Transformed Variables

At the end of the Module 4, students will be able to:

- 1. Understand the concept of two port network theory
- 2. Find the transmission line networks for designing the transmission lines.

# MODULE-5

#### Filters

Filters – Low Pass – High Pass and Band Pass – RC, RL filters– derived filters and composite filters

design – Attenuators – Network functions for one port and two port networks, pole-zeros of network functions and network stability.

At the end of the Module 5, students will be able to:

- 1. Understand about Filter, Classification, where they can be used, etc.
- 2. Understand about attenuators and equalizers used in electronic high frequency circuits
- 3. Understand the basic of network synthesis.
- 4. Understand the properties of network function.

# Total hours: 48 hours

# Term work:

Must be submit at least two assignments.

#### Content beyond syllabus:

1.Locus diagram and Electro magnetism

# Self-Study:

Contents to promote self-Learning:

SN Topic O CO



1	Analysis of Three Phase	CO1	https://www.youtube.com/watch?v=xaeob9lTXS0
	balanced circuits		
2	Analysis of Three Phase	CO2	https://www.youtube.com/watch?v=xaeob9lTXS0
	unbalanced circuits		
3	Transient response for RL	CO3	https://www.youtube.com/watch?v=2MaPC8Iw7nc
	and RC circuits		
4	Fourier Theorem	CO4	https://nptel.ac.in/courses/108/104/108104139/
5	RC, RL filters	CO5	https://www.youtube.com/watch?v=AGyjYG88LlE
6	basic synthesis procedure	CO6	https://nptel.ac.in/courses/108/102/108102042/

#### Text Book(s):

1. William Hayt, Jack E. Kemmerly and Jamie Phillips, "Engineering Circuit Analysis", Mc Graw Hill, 9th Edition, 2019.

2. A. Chakrabarti, "Circuit Theory: Analysis & Synthesis", Dhanpat Rai & Sons, 2008.

#### **Reference Book(s):**

1. M.E. Van Valkenberg, "Network Analysis", 3rd Edition, Prentice Hall (India), 1980.

2. V. Del Toro, "Electrical Engineering Fundamentals", Prentice Hall International, 2009.

3. Charles K. Alexander and Matthew. N. O. Sadiku, "Fundamentals of Electric Circuits" Mc Graw Hill, 5th Edition, 2013.

4. Mahamood Nahvi and Joseph Edminister, "Electric Circuits" Schaum's Series, 6th Edition, 2013.

5. John Bird, Routledge, "Electrical Circuit Theory and Technology", Taylor & Francis, 5th Edition, 2014.

6. Sudhakar, A., Circuits and Networks, Tata McGraw

7. Suresh Kumar, K.S. Electrical circuits and Networks, Pearson Education.

8.Network Analysis and Synthesis – Umesh Sinha- Satya Prakashan Publications

9.A. Anand Kumar, Network Analysis and Synthesis, PHI publication

#### **Online Resources:**

1.<u>http://www.acadmix.com/eBooks_Download</u>

2. http://www.freetechbook.com/software-engineering-f15.html

# Web References:

1)<u>http://www.mathtutordvd.com/products/Engineering-Circuit-Analysis-Volume-1.cfm</u>

2)<u>http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-andelectronics-spring-2007/video-lectures/lecture-2/</u>

3) <u>http://www.facstaff.bucknell.edu/mastascu/elessonsHTML/Circuit/Circuit1.html</u>



	NARAYANA ENGINEERING COLLEGE::GUDUR												
II-B.Tech <b>POWER SYSTEM ARCHITECTURE (21EE2003)</b> R2021													
Semester	Ho	Hours / Week         Total hrs         Credit         Max Marks											
	L	Т	Р		С	CIE	SEE	TOTAL					
Ι	0	0	3	48	3	40	60	100					

Pre-requisite: Basic concepts of electrical circuits and theorems

# **Course Objectives:**

- 1. To understand the structure, essential components and their layout in non renewable generating stations.
- 2. To understand the electrical power generation from renewable energy sources as sun, wind and ocean.
- 3. To understand the calculation of different transmission line parameters and their use.
- 4. To understand the various effects in transmission line.
- 5. To understand the modeling of transmission line.

**Course Outcomes**: On successful completion of the course, student will be able to:

CO 1	Describe the working	principle and	operation of	Nonrenewable	generating	stations.	(BL-2)	

- **CO 2** Discuss the working principle and operation of various Renewable energy sources. (**BL-2**)
- **CO 3** Analyze and compute the transmission line parameters. **(BL-4)**
- **CO 4** Estimate the performance of a given transmission line (**BL-5**)
- **CO 5** Analyze the performance of transmission lines (**BL-4**)

	CO-PO Mapping															
со	РО													PSO		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	1	2	2										2	2		
CO2	2	3											3	2		
CO3	3	2											3	2		
CO4	2	3	1		1								1	3		
CO5	3	3											1	1		
	1: Low, 2-Medium, 3- High															

MODULE – 1	MODULE - 1NON RENEWABLE GENERATING STATIONS11 hrs									
Thermal Power plant: Importance of electrical power generation-Sources of energy-Conventional and non-										
conventional sources-Block Diagram of Thermal Power Station (TPS).										
Hydro Power plant: Merits and demerits of hydroelectric power plants, Selection of site. General arrangement										
of hydel plant, Classificatio	of hydel plant, Classification of the plants.									
Nuclear Power plant: Intro	oduction, Merits and demerits, selection of site, Nuclear reaction, N	luclear fuels,								
Nuclear plant and layout.										
MODULE-2         RENEWABLE GENERATING STATIONS         9 hrs										
ravana Engineering College :: Gudur (Autonomous)										



Maximizing the Solar PV (	Output and Load Matching. Maximum Power Point Tracker Solar P	V Systems. Win
Power Generation: Basic	principles of wind energy conversion power in the wind-Forces on	bladesand thru
on turbines – Wind energy	gy conversion – site selection considerations– types of wind energy	ergy collectors. <b>B</b>
Energy: Biomass conve	rsion technologies . Bio gas generation . Factors affecting	bio digestion
generation of gas, Classific	cation of bio gas plants.	ere engestion
MODULE-3	TRANSMISSION LINE PARAMETERS	8 hrs
Types of Conductors, Res	istance For Solid Conductors – Skin Effect- Calculation of Induct	tance for Single
Phase and Three Phase, Co	oncept of GMR & GMD, Symmetrical and Asymmetrical Conductor	or Configuration
with and without Transpos	ition, Numerical Problems, Capacitance Calculations for Symmetri	cal and
Asymmetrical Single and T	Three Phase, Effect of Ground on Capacitance.	
MODULE-4	MODELING OF TRANSMISSION LINES	10 hrs
^{¬lassification of Transmis}	sion Lines and their equivalent circuits. Nominal-T. Nominal- $\pi$	Mathematical
	sion lines and then equivalent chedits. Noniniai-1, Noniniai- <i>n</i> .	
Solutions to Estimate Reg	gulation and Efficiency. Evaluation of A,B,C,D Constants, Surge	impedance $\alpha$
[ ] W/		
Loading, wavelengths and	Propagation, Ferranti Effect, Charging Current.	
MODULE-5	Propagation , Ferranti Effect , Charging Current. PERFORMANCE OF TRANSMISSION LINE	10 hrs
MODULE-5 Insulators: Types of Insu	PERFORMANCE OF TRANSMISSION LINE ulators, String Efficiency and Methods for Improvement, and nu	10 hrs umerical proble
MODULE-5 Insulators: Types of Insu	PERFORMANCE OF TRANSMISSION LINE ulators, String Efficiency and Methods for Improvement, and nu enon, Factors Affecting Corona, Critical and disruptive Voltages	<b>10 hrs</b> umerical proble and Power Lo
MODULE-5 Insulators: Types of Insu Corona: Corona Phenome Radio Interference.Sag an	PERFORMANCE OF TRANSMISSION LINE ulators, String Efficiency and Methods for Improvement, and nu enon, Factors Affecting Corona, Critical and disruptive Voltages and Tension Calculations: Sag and Tension Calculations with E	<b>10 hrs</b> umerical proble and Power Lo qual and Uneq
MODULE-5 Insulators: Types of Insu Corona: Corona Phenome Radio Interference.Sag an Heights of Towers,Effect of	PERFORMANCE OF TRANSMISSION LINE ulators, String Efficiency and Methods for Improvement, and nu enon, Factors Affecting Corona, Critical and disruptive Voltages and Tension Calculations: Sag and Tension Calculations with Ea of Wind and Ice on Weight of Conductor, Stringing Chart, Sag Templ	<b>10 hrs</b> umerical proble and Power Lo qual and Unequ late.
MODULE-5 Insulators: Types of Insu Corona: Corona Phenomo Radio Interference.Sag an Heights of Towers,Effect o	PERFORMANCE OF TRANSMISSION LINE ulators, String Efficiency and Methods for Improvement, and nu enon, Factors Affecting Corona, Critical and disruptive Voltages and Tension Calculations: Sag and Tension Calculations with Ea of Wind and Ice on Weight of Conductor, Stringing Chart, Sag Templ Total hours:	10 hrs umerical proble and Power Lo qual and Unequ late. 48 hours
MODULE-5 Insulators: Types of Insu Corona: Corona Phenome Radio Interference.Sag an Heights of Towers,Effect o	PERFORMANCE OF TRANSMISSION LINE ulators, String Efficiency and Methods for Improvement, and nu enon, Factors Affecting Corona, Critical and disruptive Voltages and Tension Calculations: Sag and Tension Calculations with Ea of Wind and Ice on Weight of Conductor, Stringing Chart, Sag Templ Total hours:	10 hrs umerical proble and Power Lo qual and Unequ late . 48 hours
MODULE-5 Insulators: Types of Insu Corona: Corona Phenome Radio Interference.Sag an Heights of Towers,Effect of Text Book(s):	PERFORMANCE OF TRANSMISSION LINE ulators, String Efficiency and Methods for Improvement, and nu enon, Factors Affecting Corona, Critical and disruptive Voltages and Tension Calculations: Sag and Tension Calculations with Ea of Wind and Ice on Weight of Conductor, Stringing Chart, Sag Templ Total hours:	10 hrs umerical proble and Power Lo qual and Unequ late. 48 hours
MODULE-5 Insulators: Types of Insu Corona: Corona Phenome Radio Interference.Sag an Heights of Towers,Effect of Text Book(s): 1. Power System Enginee	PERFORMANCE OF TRANSMISSION LINE ulators, String Efficiency and Methods for Improvement, and nu enon, Factors Affecting Corona, Critical and disruptive Voltages ad Tension Calculations: Sag and Tension Calculations with Ed of Wind and Ice on Weight of Conductor, Stringing Chart, Sag Templ Total hours: ering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, Dh	10 hrs umerical proble and Power Lo qual and Unequ late . 48 hours
MODULE-5 Insulators: Types of Insu Corona: Corona Phenome Radio Interference.Sag ar Heights of Towers,Effect of Text Book(s): 1. Power System Enginee Co. Pvt. Ltd., 1999	PERFORMANCE OF TRANSMISSION LINE ulators, String Efficiency and Methods for Improvement, and nu enon, Factors Affecting Corona, Critical and disruptive Voltages nd Tension Calculations: Sag and Tension Calculations with Ed of Wind and Ice on Weight of Conductor, Stringing Chart, Sag Templ Total hours: ering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, Di	10 hrs umerical proble and Power Lo qual and Unequal late . 48 hours
MODULE-5 Insulators: Types of Insu Corona: Corona Phenome Radio Interference.Sag ar Heights of Towers,Effect of Text Book(s): 1. Power System Enginee Co. Pvt. Ltd., 1999 2. Non Conventional Ene	PERFORMANCE OF TRANSMISSION LINE ulators, String Efficiency and Methods for Improvement, and nu enon, Factors Affecting Corona, Critical and disruptive Voltages nd Tension Calculations: Sag and Tension Calculations with Ed of Wind and Ice on Weight of Conductor, Stringing Chart, Sag Templ Total hours: ering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, Df ergy Sources by G.D. Rai, Khanna Publishers, 2000.	10 hrs umerical proble and Power Lo qual and Unequ late . 48 hours
MODULE-5 Insulators: Types of Insu Corona: Corona Phenome Radio Interference.Sag an Heights of Towers,Effect of Text Book(s): 1. Power System Enginee Co. Pvt. Ltd., 1999 2. Non Conventional Ene Reference Book(s):	PERFORMANCE OF TRANSMISSION LINE ulators, String Efficiency and Methods for Improvement, and menon, Factors Affecting Corona, Critical and disruptive Voltages and Tension Calculations: Sag and Tension Calculations with Ed of Wind and Ice on Weight of Conductor, Stringing Chart, Sag Templ Total hours: ering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, Df ergy Sources by G.D. Rai, Khanna Publishers, 2000.	10 hrs umerical proble and Power Lo qual and Unequ late . 48 hours hanpat Rai &
MODULE-5 Insulators: Types of Insu Corona: Corona Phenome Radio Interference.Sag an Heights of Towers,Effect of Text Book(s): 1. Power System Enginee Co. Pvt. Ltd., 1999 2. Non Conventional Ene Reference Book(s): 1. Principles of power s	PERFORMANCE OF TRANSMISSION LINE         ulators, String Efficiency and Methods for Improvement, and menon, Factors Affecting Corona, Critical and disruptive Voltages         and Tension Calculations: Sag and Tension Calculations with East         Total hours:         Total hours:         ering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, Diergy Sources by G.D. Rai, Khanna Publishers, 2000.         systems by V.K.Mehta,Rohith Mehta S.Chand(P), 4th Edition	10 hrs umerical proble and Power Lo qual and Unequ late . 48 hours
MODULE-5 Insulators: Types of Insu Corona: Corona Phenome Radio Interference.Sag ar Heights of Towers,Effect of Text Book(s): 1. Power System Enginee Co. Pvt. Ltd., 1999 2. Non Conventional Ene Reference Book(s): 1. Principles of power s 2. "Generation of Electric	PERFORMANCE OF TRANSMISSION LINE ulators, String Efficiency and Methods for Improvement, and nu enon, Factors Affecting Corona, Critical and disruptive Voltages nd Tension Calculations: Sag and Tension Calculations with E of Wind and Ice on Weight of Conductor, Stringing Chart, Sag Templ Total hours: ering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, Di ergy Sources by G.D. Rai, Khanna Publishers, 2000. systems by V.K.Mehta,Rohith Mehta S.Chand(P), 4th Edition cal Energy"- by B.R Gupta-S.Chand Publications,6th Edition(Reprin	10 hrs umerical proble and Power Lo qual and Unequal late . 48 hours hanpat Rai & t 2014)
MODULE-5 Insulators: Types of Insu Corona: Corona Phenome Radio Interference.Sag an Heights of Towers,Effect of Text Book(s): 1. Power System Enginee Co. Pvt. Ltd., 1999 2. Non Conventional Ene Reference Book(s): 1. Principles of power s 2. "Generation of Electri 3. Electrical Power Syste	PERFORMANCE OF TRANSMISSION LINE         ulators, String Efficiency and Methods for Improvement, and nu         ulators, String Efficiency and Methods for Improvement, and nu         enon, Factors Affecting Corona, Critical and disruptive Voltages         and Tension Calculations with E         of Wind and Ice on Weight of Conductor, Stringing Chart, Sag Templ         Total hours:         ering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, Dł         ergy Sources by G.D. Rai, Khanna Publishers, 2000.         eystems by V.K.Mehta,Rohith Mehta S.Chand(P), 4th Edition         cal Energy"- by B.R Gupta-S.Chand Publications,6th Edition(Reprin         ering Industrial Plants, Kamalesh Das, JAICO Publishing House, 2	10 hrs         umerical proble         and Power Lo         qual and Unequilate.         48 hours         hanpat Rai &         t 2014)         008.

2. Underground Cables.



# Text Book(s):

- Power System Engineering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, Dhanpat Rai & Co.Pvt. Ltd., 1999.
- 2. Non Conventional Energy Sources by G.D. Rai, KhannaPublishers, 2000.

# **Reference Book(s):**

- 1. Principles of power systems by V.K.Mehta, Rohith Mehta S.Chan(P), 4th Edition.
- 2. "Generation of Electrical Energy" by B.R Gupta-S.Chand Publications, 6th Edition (Reprint 2014).
- 3. Electrical Power Systems for Industrial plants, Kamalesh Das, JAICO Publishing House, 2008.
- 4. Electrical Power Systems, C.L.Wadhwa, New Age International (P) Limited, 6th Edition, 2014.

#### **Online Resources:**

https://www.ibef.org/industry/power-sector-india https://www.slideshare.net/sidhu007/non-conventional-sources-of-energy-30135444 https://www.energy.gov/eere/water/types-hydropower-plants

https://www.academia.edu/34930327/Insulators

# Web Resources:

https://www.birdvilleschools.net

https://www.learnpick.in/prime/documents/ppts/details/4866/solar-cell-technology

https://courses.engr.illinois.edu

https://vikaspedia.in/energy/energy-production/wind-energy/types-of-wind-energy-conversiondevices

https://www.learnpick.in/prime/documents/ppts/details/3777/biomass-conversion-technologies



	NARAYANA ENGINEERING COLLEGE::GUDUR												
II-B.Tech	D.	DATA STRUCTURES AND ALGORITHMS LAB (21ES1513)R2021											
Semester	Ho	urs / We	eek	Total hrs	Credit	Max Marks							
	L	T P			С	CIE	SEE	TOTAL					
Ι	0	0	3	48	1.5	40	60	100					

	COURSE CONTENT	
TASK-1		<b>3H</b>
1. Write a Program	n to Implement the following Searching Algorithms:	
a)Linear Search	b) Binary Search	
TASK-2		6H
1. Implement the	following using arrays:	
A. Write a Pro	gram to Implement Stack Operations	
B. Write a Pro	gram to convert a given infix expression into its Postfix using stack.	
2. Write a Program	n to evaluate the Postfix Expression using stack	
TASK-3		3H
1. Write a Program	n to Implement Queue Operations using Arrays	
2.Write a Program	to Implement Circular Queue Operations using Arrays	
TASK-4		<b>6H</b>
1. Write a Program	n to implement the operations of Singly Linked List	
2.Write a Program	to implement the operations of Doubly Linked List	
TASK-5		<b>6</b> H
1. Write a Program	n to implement stack operations using linked list	
2.Write a Program	to implement the operations of Circular Singly Linked List	
TASK-6		3Н
1.Write a Program	to Sort the set of elements:	
a) Insertion So	ort b) Quick Sort	
TASK-7		3Н
1. Write a Program	n to Sort the set of elements:	
a)Merge Sort	b) Heap Sort	
TASK-8		<b>6H</b>
1. Write a Program	n to implement the following on trees	
a) Insertion	and deletion operations	
b) Traversal	s	
2.Write a Program	to implement Binary Search Tree Operations.	
TASK-9		6H
1. Write a Program	n to implement the following Graph Traversal Algorithms:	
a) Depth fi	rst traversal b) Breadth first traversal	
TASK-10		<b>6H</b>
1. Write a Program	n to implement the following Minimum Spanning Tree Algorithms:	
a) Kruskal's A	lgorithm b) Prim's Algorithm	
	Additional Experiments:	
1. Write Program	to Implement Fibonacci Search	
2. Write a Program	in to implement Double Ended Queue Operations by using Array	
5. Write a Program	to implement free traversal fechniques	
H. Write a Program	to implement Radix Sort	



# **TEXTBOOK:**

- 1. D. Samanta, "Classic Data Structures", 2nd Edition, Prentice-Hall of India, Pvt. Ltd., India, 2012.
- 2. Horowitz Sahni and Anderson-Freed —Fundamentals of Data Structures in C. 2nd Edition, Universities Press, 2008.

# **REFERENCES:**

- 1. Richard F. Gilberg& B. A. Forouzan —Data Structures A Pseudocode Approcah with C, Second Edition, CENGAGE Learning.
- **2.** Ananda Rao, Data Structures and Algorithms Using C++, Akepogu, Radhika Raju Palagiri, Pearson, 2010.
- 3. Mark Allen Weiss, Data structure and Algorithm Analysis in C. Addison Wesley Publication. 2006.



	NARAYANA ENGINEERING COLLEGE::GUDUR											
II-B.Tech	IELECTRONICS DEVICES AND CIRCUITS LAB (21ES1514)R2021											
Semester	Ho	urs / We	eek	Total hrs	Credit	Max Marks						
	L	L T P			С	CIE	SEE	TOTAL				
Ι	0	0	2	32	1	40	60	100				

# Tasks List

# **Task-1: PN Junction Diode**

**Objective:** To verify the Volt- Ampere characteristics of a PN junction diode and find static, dynamic and reverse resistances of the diode from the graphs.

# Task-2: Zener Diode

**Objective:** To design a Zener diode based voltage regulator against variations of supply and load.

# **Task-3: Half Wave Rectifier**

**Objective:** To design a half wave rectifier for the given specifications with and without filters and verify experimentally and draw suitable graphs.

# **Task-4: Full Wave Rectifier**

**Objective:** To design a full wave rectifier for the given specifications with and without filters and verify experimentally and draw suitable graphs.

# **Task-5: Common Base Configuration**

**Objective:** To study and draw the input and output characteristics of BJT for common base configuration experimentally, and calculate h-parameters from the graph.

# **Task-6: Common Emitter Configuration**

**Objective:** To verify the input and output characteristics of BJT common emitter configuration experimentally and find h-parameters from the graph.

# **Task-7: Common Collector Configuration**

**Objective:** To verify the input and output characteristics of BJT common collector configuration experimentally and find h-parameters from the graph.

# **Task-8: MOSFET Characteristics**

**Objective:** To study and draw the Volt Ampere characteristics of MOSFET.

# Task-9: MOSFET As Switch

Narayana Engineering College :: Gudur (Autonomous)



**Objective:** To study the switching characteristics.

# **Task-10: LED Characteristics**

**Objective:** To study the characteristics of LED.

#### **Additional Experiments**

Task-13: Voltage- Divider Bias Circuit Using BJT.

**Objective:** To analyze and design the voltage- divider bias/self bias circuit using BJT.

# **Task-14: Clippers And Clamper Circuits**

**Objective:** To verify clipping and clamper circuits using PN junction diode and draw the suitable graphs.

#### Text Book(s):

M. Morris Mano, M.D. Ciletti, "Digital Design", 5th edition, Pearson, 2018.

John F Wakely Digital Design Principles And Practices, Pearson Publication, Fourth edition

Z. Kohavi and N. K. Jha, "Switching and Finite Automata Theory", 3rd edition, Tata McGraw Hill, 2010.

**Reference Book(s):** 

Charles H Roth (Jr), Larry L. Kinney, "Fundamentals of Logic Design", 5th edition, Cengage Learning India Edition, 2010.

John. M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.

R. P. Jain, "Modern Digital Electronics", 4th edition, McGraw-Hill Education (India Private Limited), 2012.



Course	egory	Course Title	Con	tact ] w	Perio veek	ds per	edits	Scheme of Examination Max. Marks			
Code	Cat		L	Т	Р	Total	Ċ	Int. Marks	Ext. Marks	Total Marks	
21EN1002	HS	Universal Human Values	3	0	0	3	3	40	60	100	
21EE2004	PC	AC Machines	3	0	0	3	3	40	60	100	
21EE2005	PC	Analog Electronic Circuits	3	0	0	3	3	40	60	100	
21EE2006	PC	Engineering Electromagnetics	3	0	0	3	3	40	60	100	
21EE2007	PC	Linear Control Systems	3	0	0	3	3	40	60	100	
	OE Open elective I			0	0	3	3	40	60	100	
21EE2501	PC DC Machines and Transformers Lab		0	0	3	3	1.5	40	60	100	
21EE2502	PC	Electrical Circuits and Simulation Lab	0	0	3	3	1.5	40	60	100	
21EE2503	PC	Linear Control Systems and Simulation Lab	0	0	3	3	1.5	40	60	100	
21CD6002	SC	Career competency Development II	0	0	2	2	1	40	60	100	
21IC6001	Industry Oriente1IC6001SCCourse I		0	0	0	0	1	100		100	
		Counseling/Mentorin g	0	0	1	1	0				
		Sports/Hobby Clubs/Activities	0	0	2	2	0				
		Activity Point Programme		Dur	ing th	ne Semes	ster		20 Points		
		Total	18	0	14	32	24.5	500	600	1100	

# SEMESTER IV



	NARAYANA ENGINEERING COLLEGE::GUDUR												
II-B.Tech		Universal Human Values (21EN1002) R2021											
Semester	Hours / Week			Total hrs	Credit		ks						
	L	T P			С	CIE	SEE	TOTAL					
II	3	0	0	48	3	40	60	100					

# **Pre-requisite:** Basic concepts of electrical circuits and theorems

# **Course Objectives:**

The objective of the course is four fold:

1. Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.

2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence

3. Strengthening of self-reflection.

4. Development of commitment and courage to act.

Course O	<b>Dutcomes</b> : On successful completion of the course, student will be able to:							
CO 1	Students are expected to become more aware of themselves, and their surroundings (family, society, nature) (PL 2)							
	$\frac{111}{11} + \frac{11}{11} + 1$							
CO 2	They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind. (BL-2)							
CO 3	They would have better critical ability. (BL-2)							
CO 4	They would also become sensitive to their commitment towards what they have understood (human							
04	values, human relationship and human society). (BL-2)							
CO 5	It is hoped that they would be able to apply what they have learnt to their own self in different day-							
05	to-day settings in real life, at least a beginning would be made in this direction. (BL-3)							

	CO-PO Mapping														
CO	РО												PS	PSO	
00	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1								3	2	2					
CO2								3	2	2					
CO3								3	2	2					
CO4								3	2	2					
CO5								3	2	2					
	•		•			1: Lo	w, 2-Med	ium, 3- H	ligh	1		•		1	

# Unit 1:

# **Course Introduction - Need, Basic Guidelines, Content and Process for Value Education**

. Purpose and motivation for the course, recapitulation from Universal Human Values-I

. Self-Exploration what is it? - Experiential Validation- as the process for self-exploration

. Continuous Happiness and Prosperity- A look at basic Human Aspirations

. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority

. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario

. Method to fulfil the above human aspirations: understanding and living in harmony at various levels.



Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence)rather than as arbitrariness in choice based on liking-disliking

#### Unit 2: Understanding Harmony in the Human Being - Harmony in Myself!

- Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- Understanding the characteristics and activities of 'I' and harmony in 'I'
- Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

# Unit 3:

# Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship

- Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- Understanding the meaning of Trust; Difference between intention and competence
- Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives



# Unit 4:

# Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- Understanding the harmony in the Nature
- Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- Understanding Existence as Co-existence of mutually interacting units in allpervasive space
- Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

# Unit 5:

# Implications of the above Holistic Understanding of Harmony on Professional Ethics

- Natural acceptance of human values
- Definitiveness of Ethical Human Conduct
- Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- Case studies of typical holistic technologies, management models and production systems
- Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations
- Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. To discuss the conduct as an engineer or scientist etc.

# Text Book

 R R Gaur, R Asthana, G P Bagaria, "A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1



 R R Gaur, R Asthana, G P Bagaria, "Teachers' Manual for A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

# **Reference Books**

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amar kantak, 1999.
- 2. A. N. Tripathi, "Human Values", New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. Mohandas Karamchand Gandhi "The Story of My Experiments with Truth"
- 5. E. FSchumacher. "Small is Beautiful"
- 6. Slow is Beautiful -Cecile Andrews
- 7. J C Kumarappa "Economy of Permanence"
- 8. Pandit Sunderlal "Bharat Mein Angreji Raj"
- 9. Dharampal, "Rediscovering India"
- 10. Mohandas K. Gandhi, "Hind Swaraj or Indian Home Rule"
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland(English)
- 13. Gandhi Romain Rolland (English)



	NARAYANA ENGINEERING COLLEGE:GUDUR													
II-B.Tech					AC MA	CHIN	ES (21	EE2004	1)				R202	1
Semester		Ho	ours / V	Veek		To	otal	Credi	it		М	lax Ma	rks	
	L	,	Т		Р	h	nrs	C		CIE		SEE	TO	ΓAL
II	3		0		0	2	48	3		40		60	1	00
Pre-requisi	te: Ni	il												
Course Obj	Course Objectives:													
1. To unde	1. To understand the Constructional details, principle of operation and the importance of slip													
in Induction motor operation														
2. To understand the slip-torque characteristics and torque calculations of Induction motor														
3. To under	rstand	the n	nethod	ls of st	tarting	and s	speed	contro	ol of I	nductio	on mo	tor		
4. To under	rstand	the c	onstru	ction	and pr	incipl	e of w	vorkin	g of s	synchro	onous	machi	nes	
5. To unde	rstand	the d	lifferer	nt met	hods o	f prec	letern	nining	the r	egulati	on of a	alterna	ators	
6. To unde	rstand	the c	oncep	ts and	comp	utatio	n of lo	oad sh	aring	among	g alter	nators	in para	llel.
7. To und	erstan	d the	perfo	ormano	ce cha	racter	ristics	of sy	nchr	onous	motor	s and	their u	use as
synchronou	us con	dense	ers for	power	r facto	r impi	rovem	ent.						
8. To unde	8. To understand the different types of single phase motors and special motors used in house													
hold applia	hold appliances and control systems.													
Course Out	come	s: Afte	er succ	essful	comp	letion	of th	e cour	se, th	e stude	ent wil	l be at	ole to:	
CO 1	To a	To acquire the basic knowledge of construction, working and operation of												
	indu	ction	motor.			U			,	U	1	L		
CO 2	Iden	tifv di	ifferen	t spee	d cont	rollin	g tech	nique	s of I	nductio	on mot	tor for	the giv	en
	appl	icatio	n.				0	1					0	-
CO 3	To i	npart	know	ledge	on Co	nstruc	ction a	nd per	rform	ance o	f salie	nt and	non –	
	salie	nt typ	e svnc	hrono	us gen	erato	rs and	l deter	mine	how se	everal	altern	ators ru	nning
	in pa	rallel	share	the lo	ad on t	the sv	rstem			110 11 51	, or ur	uncern		
CO 4	Anal	vze tl	he nerf	formai	nce ch	aracte	ristics	ofsv	nchro	nous r	notors	1		
<u> </u>	Toi	nnort	know!	lodgo	$\frac{100}{2}$ Cor	notruo	tion	princij		Coporat	ion or	, nd nor	formon	va of
	10 II	la pho	KIIUWI so indu	uction	motor	iisiiuc			ohino	operat	.1011 ai	iu per		
	singi	le plia	se mu	uction			Man	aing	cinne	5.				
0					Ľ	<u>.0-г0</u> D		Jing					DS	0
20	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1										2	2
CO2	3	2	2										2	2
CO3	3	2	2										2	2
CO4	3	2	1										2	2
CO5	3	2	1										2	2
					1: Lov	v, 2-M	ledium	n, 3- Hi	gh					

# **COURSE CONTENT**

# **MODULE – 1** POLYPHASE INDUCTION MOTORS

Polyphase Induction Motors-Constructional Details of Cage and Wound Rotor Machines, Production of Rotating Magnetic Field, Principle of Operation, Slip, Rotor Power Input, Rotor Copper Loss and Mechanical Power Developed and Their Inter Relationship.

At the end of the Module 1, students will be able to:

- Able to Analyze Production of Rotating Magnetic Field.
- Able to understand Cage and Wound Rotor Machines.



# STARTING METHODS OF INDUCTION MOTORS

Torque Equation, Expressions for Torque, Torque Slip Characteristics, Load characteristics, Equivalent Circuit, Phasor Diagram, Crawling and Cogging, Circle Diagram.

Starting- Starting methods of squirrel cage and wound rotor induction motor. Speed Control-Various methods of speed control of squirrel cage and wound rotor induction motor.

At the end of the Module 2, students will be able to:

- Able to Analyze Torque Slip Characteristics
- Able to understand Starting Methods of Induction Motors

# MODULE-3 SYNCHRONOUS GENERATORS

Principle and Constructional Features of Salient Pole and Round Rotor Machines – Armature Windings, E.M.F Equation- Armature reaction – Voltage Regulation Methods, Power Flow Equation in Alternators – Synchronizing Power and Torque – Parallel Operation and Load Sharing – Effect of Change of Excitation and Mechanical Power Input – Determination of  $X_d$  and  $X_g$ .

At the end of the Module 3, students will be able to:

- Able to understand the construction and principle of operation of synchronous generators.
- Able to understand the Voltage Regulation Methods.
- Able to understand the parallel operation of synchronous generators.
- Able to understand the Sub-Transient, Transient and Steady State Reactances.

# MODULE-4 SYNCHRONOUS MOTORS

Synchronous Motors Operation – Phasor Diagram – Power Flow Equations in Synchronous Motors- Variation of Current and Power Factor with Excitation – V and Inverted V Curves – Hunting, and Methods to Eliminate Hunting – Starting Methods of Synchronous Motor.

At the end of the Module 4, students will be able to:

- Able to understand the operation of synchronous motors.
- Able to understand the Starting Methods of Synchronous Motor.

# MODULE-5

# SINGLE PHASE AND SPECIAL MOTORS

Single Phase Induction Motors - Constructional Features – Double Revolving Field Theory-Cross Field Theory – Split Phase Motors – Capacitor Start and Run Motors – Shaded Pole Motor. A.C Series Motor - Universal Motor – BLDC Motors, Reluctance Motor, Stepper Motor. At the end of the Module 5, students will be able to:

At the end of the Module 5, students will be able to:

- Able to understand the operation of Single Phase Induction Motors.
- Able to understand the special Electrical Machines.

Total hours: 48 hours

# Term work:

Synchronous machines & Induction machines- Power plants & Industrial visits.

# Content beyond syllabus:

- 1. Advanced Speed Control methods for Poly phase Induction Motors.
- 2. Two Reaction Theory –Determination of Xd and  $X_q$  (Slip Test).
- 3. Principle of operation and control of Brushless DC motor.

# Self-Study:

Contents to promote self-Learning:

	SNO	Торіс	СО	Reference
	1	3-phase Induction	CO1	https://nptel.ac.in/courses/108/102/108102146/
Va	rayana I	Engineering College :: Gudur	(Autono	imous)



	Motors		
2	Circle Diagram	CO2	https://nptel.ac.in/courses/108/105/108105131/
3	Synchronous Generator	CO3	https://www.youtube.com/watch?v=b24jORRoxEc
4	Parallel operation of Alternators	CO4	https://www.youtube.com/watch?v=aZR7JsH9Qn M
5	Synchronous motor	CO5	https://www.youtube.com/watch?v=fdMIuEqh48 M&list=PLPpCFgQP7QKHSJQnSwaigL89gshecy cXs
6	Single Phase Induction motors	CO6	https://nptel.ac.in/courses/108/102/108102146/

# Text Book(s):

- 1. Electrical Machinery, P.S. Bimbhra, Khanna Publishers, 7th Edition, 2011.
- Electric Machines 4th edition, D.P.Kothari and I.J. Nagrath, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition, 2010, 16th Reprint 2015.

#### **Reference Book(s):**

1. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.

2. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

3. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.

4. A. S. Langsdorf, "Alternating current machines", McGraw Hill Education, 1984.

5. Electrical Machines, S K Bhattacharya, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition, 2014, 3rd Reprint 2015.

#### **Online Resources:**

1. http://175.101.102.82/moodle/

2. https://www.accessengineeringlibrary.com/

3. https://www.slideshare.net/

4. https://easyengineering.net/electrical-machinery-by-bimbhra/

5.https://books.google.co.in/books?id=dh_gDwAAQBAJ&lpg=PR1&dq=electrical%20machines%20by%20 kothari%202020&pg=PR8#v=onepage&q&f=false

# Web Resources:

1. <u>https://electrical-engineering-portal.com/</u>

2. <u>https://www.electrical4u.com/</u>

3. <u>http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/Sadhya/experimentlist.html</u>

4. <u>https://www.engineering.com/</u>



NARAYANA ENGINEERING COLLEGE:GUDUR													
II-B.Tech		ANALOG ELECTRONIC CIRCUITS (21EE2005) R2021											
Semester	Н	Iours / Wee	k	Total	Credit	Max Marks							
	L T P			hrs	С	CIE	SEE	TOTAL					
II	3	0	0	48	3	40	60	100					

# **MODULE-1**

# WAVE SHAPING CIRCUITS

10h

Linear Wave Shaping: High pass and low pass RC circuits and their response for sinusoidal, Step, Pulse, Square& Ramp inputs, High pass RC network as differentiator, Low pass RC circuit as an integrator.

Non-Linear wave shaping: Diode clippers, Transistor clippers, Clipping at two independent levels. Clamping operation, Clamping circuit by considering source and diode resistances.

# MODULE-2 FEEDBACK AMPLIFIERS & OSCILLATORS

10h

9h

Feedback amplifiers: Feedback principle and concept, Types of feedback, Feedback topologies, Characteristics of negative feedback amplifiers, Determination of input & output impedance of voltage series, Voltage shunt, Current series& current shunt configurations.

Oscillators: Oscillator principle, Condition for oscillations, Types of oscillators, Hartley oscillator, Colpitt's oscillator, RC-phase shift oscillator, Wein bridge oscillator.

# MODULE-3 SINGLE STAGE & MULTISTAGE AMPLIFIERS

Single stage amplifiers: Transistor hybrid model, Determination of h-parameters, Generalized analysis of transistor amplifier model using h-parameters, Analysis of CB, CE and CC amplifiers. Multi stage Amplifiers: Classification of amplifiers, Different coupling techniques, Cascaded amplifier, Cascode amplifier.

**MODULE-4** 

# **POWER AMPLIFIERS**

9h

Classification, Series fed Class A large signal amplifier, Transformer coupled class A large signal amplifier, Amplifier distortion, Push- pull class B amplifier, Complementary symmetry class B amplifier, Push- pull class AB amplifier, Complementary symmetry class AB amplifier, Heat sink and thermal stability.

# **MODULE-5**

# **OP-AMP CHARACTERISTICS**

10h

Introduction, Ideal and practical Op-amp, Op-amp characteristics – DC and AC characteristics, 741 Opamp and its features, Modes of operation-inverting, Non-inverting, Differential. Basic applications of Opamp, Instrumentation amplifier, Sample &hold circuits, Differentiator and integrator, Comparators, Schmitt trigger, Multi-vibrators, Introduction to voltage regulators.

Narayana Engineering College :: Gudur (Autonomous)



# **Text Book(s):**

- 1. Millman, Halkias and Jit, "Electronic Devices and Circuits", 4th Edition, Mc Graw Hill Education (India) Private Ltd., 2015.
- 2. Donald A. Neaman, "Electronic Circuit Analysis and Design", McGraw-Hill.
- 3. Ramakanth A. Gayakwad, "Op-Amps & Linear Ics", 4th Edition, Pearson, 2017.

# **Reference Book(s):**

1. Millman and Taub, Pulse, Digital and Switching Waveforms, 3rd edition, Tata McGraw-Hill Education, 2011.

- 2.J. Milliman, C. C. Halkias and Chetan Parikh, "Integrated Electronics", 2nd edition, McGraw-Hill, 2010.
- 3. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits Theory" Pearson/Prentice Hall, 9th edition, 2006.



NARAYANA ENGINEERING COLLEGE:GUDUR														
II-B.Tech	]	ENG	INEE	CRIN	G ELE	CTR	OMA	GNE	TIC	S (21E)	E <b>2006</b>	<b>5</b> )	R202	1
Semester		Ho	ours / V	Week		T	otal	Cred	it		М	lax Ma	ırks	
	L		Т		Р	ł	nrs	C		CIE		SEE	TO	ΓAL
II	3		0		0	4	48	3		40		60	1	00
<b>Pre-requis</b>	ite: N	Nil												
Course Ob	ojectiv	es:												
1. To review	w the f	unda	menta	ls of	the diff	ferent	coord	linate	syste	ms, veo	ctor al	gebra	and cal	culus
2. To teach	the ba	sic la	aws of	elect	romagi	netisn	1							
3. To learn to compute and visualize the electrostatic and magnetostatic fields for simple														
configuration	ons													
4. To analys	se the	time	varyir	ıg ele	ctric ar	nd ma	gnetic	e fields	s and	to und	erstan	d Max	well's	
equations														
5. To under	stand	the p	ropaga	ation (	of elect	troma	gnetic	e wave	es thr	ough di	ifferer	nt med	ia	
Course Ou	<b>Course Outcomes</b> : After successful completion of the course, the student will be able to:													
CO 1	Abil	ity to	o ident	ify ap	propri	ate co	ordin	ate sys	stems	and vi	sualiz	e and	underst	and
	the p	ractio	cal sig	nifica	ince of	vecto	or calc	ulus						
<b>CO 2</b>	Und	ersta	nding	of the	basic	laws	of elec	ctrosta	tics,	Ability	to co	mpute	, visual	ize
	elect	rosta	tic fiel	lds alo	ong wit	th pra	ctical	applic	atior	is		-		
CO 3	Unde	erstar	nding	of the	basic l	laws o	of mag	gnetos	tatics	5				
CO 4	Abil	itv to	$\frac{c}{com}$	oute. v	visualiz	ze ma	gneto	static	field	s along	with	practio	cal	
001	appli	catio	ons	,			0			2		r		
CO 5	Unde	erstar	nding o	of Ma	xwell'	s eau	ations	in dif	feren	t forms	and r	nediur	n	
000	01100		8											
00					C	<u>)-PO</u>	Map	ping					DC	
co	DO		DO	DO	DO			DO	DO	DO	DO	DO	PSO DSO	
	<b>PU</b>	PU 2	PU 3		PO 5	PU 6	PO 7	PU 8		PO 10	PU 11	PU 12	PSU 1	PSU 2
CO1	3	3	2	2	5	U	/	0	,	10	11	14	2	1
<u>CO2</u>	3	3	$\frac{2}{2}$	$\frac{2}{2}$									2	1
<u>CO3</u>	3	3	1	1									2	1
CO4	3	3	2	2									2	1
CO5	3	3	2	2									2	1
1: Low, 2-Medium, 3- High														

# **COURSE CONTENT**

# MODULE – 1

# ELECTROSTATICS

Vector algebra, Coordinate systems, Vector calculus- Gradient, Divergence and Curl theorems and applications, Sources and effects of electromagnetic fields, Coulomb's Law – Electric field intensity – Field due to discrete and continuous charges – Gauss's law and its applications.

At the end of the Module 1, students will be able to:

- 1. Recollect the basic concepts Vectors
- 2. Understand the applications of Electrostatics
- 3. Illustrate the basic laws of Electrostatics

# MODULE -2



# ELECTRIC FIELD IN MATERIALS

Electric potential – Electric field and equipotential plots– Electric field in free space, conductors, dielectric –Dielectric polarization – Dielectric strength – Electric fields in multiple dielectrics – Boundary conditions, capacitance, Energy density, Poisson's and Laplace's equations.

At the end of the Module 2, students will be able to:

- 1. understand the concept of Electric potential
- 2. Differentiate between conductor and dielectric in electric field

# MODULE-3

# ELECTRO MAGNETIS

Magnetic field intensity (H) – Biot– Savart's Law – Ampere's Circuit Law – H due to straight conductors, circular loop, infinite sheet of current, Magnetic flux density (B) – Magnetic force, Lorentz force, force between two conductors,- Boundary conditions.

At the end of the Module 3, students will be able to:

- 1. Understand the basic laws of Magnetostatics
- 2. Analyze the concept of magnetic force

# **MODULE-4**

# MAGNETIC POTENTIAL

Scalar and vector potential, Poisson's Equation, Torque, Inductances and mutual inductances of solenoid and toroid, Neumann's formula, Energy density, Numerical problems.

At the end of the Module 4, students will be able to:

- 5. Apply the poisson's & Laplace's equations to different problems
- 6. Analyze the inductance of different coil combinations

# MODULE-5

# ELECTRODYNAMIC FIELDS

Magnetic Circuits – Faraday's law – Transformer and motional EMF – Displacement current – Maxwell's equations (differential and integral form) – Time varying potential.

At the end of the Module 5, students will be able to:

- 1. Understand the Faraday's law of electromagnetic induction
- 2. Analyze the Maxwell's equations for static and time varying fields

Total hours: 60 hours

# Term work:

Design of solenoid and thoroid.

# **Content beyond syllabus:**

Electric power transmission

# Self-Study:

Contents to promote self-Learning:

SNO	Торіс	CO	Reference
1	Gauss's law and its	CO1	https://www.youtube.com/watch?v=M0GInI0vNh
	applications		<u>8</u>
2	Poisson's and	CO2	https://www.youtube.com/watch?v=I-lKnLnnbY4
	Laplace's equations		



3	Biot-Savart's Law	CO3	https://www.youtube.com/watch?v=X9mYh8aG2
			AQ
4	Neumann's formula	CO4	https://www.youtube.com/watch?v=iVANETIf3c
			<u>M</u>
5	Displacement current	CO5	https://www.youtube.com/watch?v=77PZPBXMl
			<u>1w</u>
6	Wave parameters;	CO6	https://www.youtube.com/watch?v=z_L58oLkW
	velocity, intrinsic		<u>c</u>
	impedance,		
	propagation constant		

Text Book(s):	
1.	Mathew N. O. Sadiku, S.V.Kulkarni, 'Principles of
	Electromagnetics', 6 th Edition, Oxford
University Press, 2015, Asian	n Edition
2.	William H. Hayt and John A. Buck, 'Engineering
	Electromagnetics', Tata McGraw Hill ,8 th
Revised edition, 2014	
Reference Book(s):	
3.	Bhag Singh Guru and Huseyin R. Hiziroglu "Electromagnetic field theory
fundamentals",Cambridge U	niversity Press; Second Revised Edition, 2009.
4.	. Ashutosh Pramanik, 'Electromagnetism – Theory and
	Applications', PHI Learning Private
Limited, New Delhi, Second	Edition-2009
3. Inan U. S. and A. S. Inan,	Engineering Electromagnetics, Pearson Education, 2010.
4. Joseph. A.Edminister, 'Scl	haum's Outline of Electromagnetics, Third Edition (Schaum's
Outline Series), Tata McGrav	w Hill, 2010
Online Resources:	
1. http://alumni.media.mit.ed	u/~aggelos/papers/EM_Hayt_6th.pdf
2. https://nptel.ac.in/courses/	108/106/108106073/
Web Resources:	
1.	
https://www.youtube.com/wa	atch?v=pGdr9WLto4A&list=PLl6m4jcR_DbOx6s2toprJQx1MORq
Pa9rG	
2. <u>https://www.you</u>	tube.com/watch?v=G5P6dInMTFg&list=PLuv3GM6-gsE3-hVNaw-
<u>YEb7EeY5XVPZdz</u>	



NARAYANA ENGINEERING COLLEGE:GUDUR									
II-B.Tech		LINEAI	R CONTR	OL SYSTE	MS (21EF	E2007)		R2021	
Semester	Н	lours / Wee	k	Total	Credit		Max Mar	ks	
	L	Т	Р	hrs	С	CIE	CS	TOTAL	
II	3	0	0	48	3	40	100		
Pre-requisi	te: Basics	concepts o	f Electrical	Circuits &	Basics of l	Laplace trai	nsform		
Course Objectives:									
1. To under	stand the	merits and	demerits	of open an	d closed lo	op control	systems		
2. To under	stand the	mathemati	ical modeli	ing of Elect	rical and m	nechanical	control sys	stems	
3. To under	stand the	step respo	nse of seco	ond order o	control syst	tems			
4. To plot R	oot locus f	or the give	en system t	ransfer fu	nction				
5. To under	stand the	stability an	alysis from	n Bode plo	t, polar plo	ts			
6. To under	stand the	state space	e analysis						
Course Out	comes: Af	ter success	ful compl	etion of th	e course, t	he student	will be ab	le to:	
CO 1	Determine	e the transf	er function	for the given	ven electric	al or mech	anical system	ems and also	
	determine	the transfe	r function of	of a system	using bloc	k diagram	reduction to	echniques and	
	Mason's g	gain formul	a						
CO 2	Analyze the system behaviour in time domain and step response to various dampings.								
CO 3	Determine the stability of given system by applying Routh's stability criteria.								
CO 4	Analyze the stability of given system by means of Bode plot and polar plot								
CO 5	Determin	e the state	model and	assessme	nt of contro	ollability &	c observabi	lity from the	
	given tran	sfer functio	on.						

	CO-PO Mapping													
СО						Р	0						PS	60
	POPOPOPOPOPOPOPO											PO	PSO	PSO
L	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2												1
CO2	2	1												1
CO3	2	1												1
CO4	2	1	1											1
CO5	2	1	1											1
1: Low, 2-Medium, 3- High														

# **COURSE CONTENT** MODULE - 1 INTRODUCTION TO CONTROL SYSTEMS

Examples & Classification of control systems, merits and demerits of Open Loop and closed loop control systems, Effects of positive and negative feedback

Mathematical modelling and transfer function of Electrical and Mechanical systems, Analogous systems. Control System Components: DC Servo motor, AC Servo motor, Synchro Transmitter & Receiver **Block diagrams**: Block diagram representation of control systems, Block Diagram Reduction Rules .Signal flow graph: Definitions, Reduction using Mason's gain formula.

At the end of the Module 1, students will be able to:

1. Identify the difference between open loop and closed loop systems

2. Understand the effect of feedback on system performance

3. Model the given electrical or mechanical control system

4. Apply the block diagram reduction to simplify the given system

. Apply the Signal flow graph reduction to simplify the given system Narayana Engineering College :: Gudur (Autonomous)



6. Derive the transfer function of Ac and DC servo motor

#### MODULE-2

# TIME RESPONSE ANALYSIS

Standard test signals, Time response of first order and second order un damped, under damped, critically damped and over damped systems, Time domain specifications. **Error Analysis:** Steady state Error, static error coefficient of type 0,1, 2 systems

At the end of the Module 2, students will be able to:

11. Identify the importance of basic test signals

12. Analyze the Time response of second order system with different dampings

13. compute steady state error for the given system for any input signal.

# MODULE-3

# STABILITY ANALYSIS

**Stability:** The concept of stability, Routh's stability criterion, limitations of Routh's stability.

**Root locus plot**: The root locus concept, construction of root loci, effects of adding poles and zeros to G(s)H(s) on the root loci.

At the end of the Module 3, students will be able to:

- 7. Understand various stability issues
- 8. Apply Routh's stability criteria to given system for stability assessment
- 9. Draw Root locus plot for the given system

# MODULE-4

# FREQUENCY RESPONSE ANALYSIS

Introduction, Frequency domain specifications, Bode plot, polar plot, Transfer function from the Bode Diagram, Stability Analysis from Bode Plots. Polar Plots, Nyquist Plots.

**Compensation Techniques:** Lag, Lead, Lag-Lead Compensators.

At the end of the Module 4, students will be able to:

- 1. Understand various frequency domain specifications.
  - 2. Draw the Bode plot for the given system.
  - 3. Determine the stability of given system from Bode plot and polar plot

# MODULE-5 STATE SPACE ANLYSIS

**Introduction:** Concepts of state, state variables and state model, derivation of state models from differential equations, Diagonalization.

**Solution of state equation:** Solving the Time invariant state Equations, State Transition Matrix and it's Properties.

The concepts of controllability and observability.

At the end of the Module 5, students will be able to:

- 1. Understand the importance of state space analysis
- 2. Find the state model for the given transfer function through various techniques.
- 3. Determine the controllability and observability of given state model.

Total hours: 48 hours

**Term work:** Tutorials & quizzes

Content beyond syllabus:

1. Introduction to P,PI,PID controllers.

2. State space representation of Armature and Field controlled DC motor.

СО

#### Self-Study:

Contents to promote self-Learning:

SNO Topic

Reference



1	Open Loop and closed loop control systems	CO1	https://www.tutorialspoint.com/control_systems/control_sy stems_introduction.htm
2	Block diagram rules	CO2	https://www.tutorialspoint.com/control_systems/control_sy stems_block_diagram_algebra.htm
3	Time response of second order system	CO3	https://www.tutorialspoint.com/control_systems/control_sy stems_time_response_analysis.htm
4	Routh's stability criteria	CO4	https://www.tutorialspoint.com/control_systems/control_sy stems_stability_analysis.htm
5	Frequency domain specifications	CO5	https://www.tutorialspoint.com/control_systems/control_sy stems frequency response analysis.htm
6	Controllability and observability	CO6	https://www.tutorialspoint.com/control_systems/control_sy stems_state_space_analysis.htm

#### Text Book(s):

1. "Control Systems Engineering, I. J. Nagrath and M. Gopal, New Age International Publishers, 5th edition, 2007, Reprint 2012.

2. Control Systems by A. Anand Kumar, PHI Learning pvt. Ltd., second edition

# **Reference Book(s):**

- 1. Norman S. Nise, "Control Systems Engineering", John Wiley & Sons PTE Ltd, 2013
- 2. 3. Modern Control Engineering, Katsuhiko Ogata, PEARSON, 1st Impression 2015.

#### **Online Resources:**

- 1. http://www.aoengr.com/SampleBook.pdf
- 2. http://www.ent.mrt.ac.lk/~rohan/teaching/EN5001/Reading/DORFCH1.pdf

#### Web Resources:

- 1. https://nptel.ac.in/courses/107/106/107106081/
- 2. https://www.tutorialspoint.com/control_systems/index.htm
- 3. <u>https://www.youtube.com/watch?v=XYbrgwKP_6k</u>



NARAYANA ENGINEERING COLLEGE:GUDUR														
II-B.Tech	l	DC M	ACHI	NES A	ND TI	RANS	FOR	MERS	LAB	(21EE	E <b>250</b> 1	l)	R202	1
Semester		He	ours / V	Veek		Т	otal	Credi	t		Μ	lax Ma	rks	
	L	,	Т		Р	ł	nrs	С		CIE		CS	TO	ГAL
II	0		0		3	4	48	1.5	5	40		60	1	00
Pre-requisi	te: B	asics	concep	ts of E	lectrica	l Circ	uits &	Basic	s of L	aplace t	ransfo	rm		
Course Objectives:														
1. To familiarize students about OCC and internal, external characteristics of dc shunt generator.														
2. To know	the pe	erforn	nance	charad	teristi	cs and	spee	d cont	rol m	ethod o	of dc s	hunt n	notor	
3. To know	how t	o pre	detern	nine th	ne effic	iency	of dc	shunt	moto	r.				
4. To find e	fficien	icy, lo	sses ar	nd reg	ulation	of sir	ngle pł	nase tr	ansfo	rmer.				
5. To know	how t	o find	l moto	r and g	genera	tor ef	ficiend	cy by c	onne	cting to	dc sh	unt m	achines	back
to back														
6. To famili	arize s	tuder	nts abo	out cha	racter	istics	of dc s	eries i	noto	r				
Course Out	come	s: Aft	er succ	essful	comp	letior	n of th	e cour	se, th	e stude	ent wil	l be at	ole to:	
CO 1	Dete	rmine	the m	agneti	zation	and lo	oad ch	aracter	ristics	of a D	C shu	nt gene	erator	
CO 2	Desc	ribe t	he effi	ciency	and pe	erforn	nance	charac	terist	ics of I	DC mo	otors		
CO 3	Pred	eterm	ination	of tra	nsform	ner wi	th diff	erent l	oads					
					C	O-PO	Map	oing						
СО						Р	0						PS	0
	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2	2				3	2		3	3	3
CO2	2	3	3	1	2				2	2		3	3	3
CO3	3	3	3	1	2				2	2		3	3	3
					1: Lov	v, 2-N	ledium	n, 3- Hi	gh					

#### List of Experiments Prescribed and Conducted:

1. Conduct an Experiment to obtain OCC Characteristics of dc Shunt generator.

2. Conduct Brake test on dc shunt motor to obtain performance characteristics.

3. Conduct speed control methods of dc shunt motor.

4. Conduct Swinburne's test on a DC Shunt machine.

5. Conduct OC and SC test on single phase transformer

6. Conduct Sumpner's test on two identical transformers

7. Conduct load test on single phase transformer

8. Conduct an Experiment to obtain internal and external characteristics of dc shunt generator.

9. Conduct an experiment from 3phase to 2 phase conversion by using Scott Connection

10. Conduct load test on dc series motor.

**Total hours:** 

30 hours



	NARAYANA ENGINEERING COLLEGE:GUDUR									
II-B.Tech	ELEC	TRICAL C	IRCUIT A	NALYSIS	AND SIM	ULATION	I LAB	R2021		
			(2	21EE2502	2)					
Semester	Н	lours / Wee	k	Total	Credit		Max Mar	ks		
	L	Т	Р	hrs	С	CIE	CS	TOTAL		
II	0	0	3	48	1.5	40	60	100		
Pre-requisi	te: Basics	concepts c	of Electrical	Circuits &	Basics of I	Laplace trai	nsform			
Course Obj	ectives:									
The objectiv	es are to st	udy:								
1. To design	electrical s	systems.								
2. To analyz	e a given n	etwork by a	applying va	rious Netw	ork Theorei	ms.				
3. To measu	ire three ph	ase Active	and Reacti	ve power.						
4. To unders	stand the lo	ocus diagra	ms							
Course Out	comes: Aft	ter success	ful compl	etion of th	e course, tl	he student	will be ab	le to:		
CO 1	Analyze	the three p	hase circu	its for iden	ntification	of utilizati	ion in Pow	er system.		
CO 2	Examine	the trans	sient respo	onse of s	eries and	parallel of	circuits w	ith different		
	combinations of R, L and C by using AC / DC supply.									
CO 3	Identify the various parameters to analyze the transmission and distribution system									
	in electrical engineering.									
CO 4	Model th	e different	types of f	filters for u	inderstand	the pass b	oand and a	ttenuation of		
	the variou	us signals.				-				

# **CO-PO & PSO Mapping:**

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3				2		1	2	2	2	2	2	2
CO2	3	3			2	2			2	2	2		2	2
CO3	3	3				2			2	2	2	2	2	2
CO4	3	3	3		2	2		1	2	2			2	2

1 – Low Level; 2 – Moderate Level; 3 – High Level

# **List of Experiments**

TASK-1-	Analysis of three phase circuits	

# **Objective:**

To verify phase voltage and line voltage in balanced and unbalanced three phase circuits.

TASK -2 Measurement of Power in three phase Star and Delta Connected loads

# **Objective:**

Measurement of active power of an 3-  $\Phi$  balanced load using 1-  $\Phi$  Wattmeter.

# TASK-3 Measurement of 3-Phase Power by Two Wattmeter Method for Unbalanced Loads

#### **Objective:**

To measure the reactive power consumed by a 3 phase load using 2 wattmeter method.

# Task -4 Transient response of RL and RC circuit

Narayana Engineering College :: Gudur (Autonomous)


### **Objective:**

To verify the **Transient response of RL circuit and to find the time constant of RL and RC network.** 

### TASK-5 Transient response of series and parallel RLC circuit

### **Objective:**

To verify the Transient response of series and parallel RLC circuit

### TASK-6 Low pass & High pass filter

### **Objective:**

To design low pass filter and to plot output verses frequency characteristics

### TASK-7 Z & Y parameters

### **Objective:**

To calculate and verify Z -parameters and Y- parameters of given two-port network

TASK-8 Transmission and Hybrid Parameters

#### **Objective:**

To calculate and verify 'ABCD' parameters and h- parameters of given two-port network

TASK-9 Simulation of Transient Response of DC and AC circuits

#### **Objective:**

To simulate the transient response of simple DC and AC circuits using PSpice

### TASK -10 Simulation of k and m- pass filters

### **Objective:**

To simulate the k and m-pass filters using PSpice.

### Additional Experiments:

### Virtual Lab:

- 1. Parallel RC Circuits
- 2. Parallel LC Circuits
- 3. Series RL Circuits
- 4. Series LCR Circuit
- 5. Parallel LCR Circuits

#### Text Book(s):

1. Simulation of Power Electronics Circuit, M B Patil, V Ramanarayan and V T Ranganat, Alpha Science International Ltd., 2009.



#### **Reference Book(s):**

1. A Sudhakar, Shyammohan S Palli, "Circuits & Networks", Tata McGraw-Hill, 4th Edition, 2010.

2. WillamHayt.jr, Jack E.kemmerly, Steven M.Durbin, "Engineering Circuit analysis" Tata McGraw-Hill, 8th Edition2012

3 A Chakrabarthy, "Electric Circuits", Dhanpat Rai & Sons, 6th Edition, 2010.

4 Rudrapratap, "Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers", Oxford University Press, 1 st Edition, 1999.



	CONTRO		NARAYANA ENGINEERING COLLEGE:GUDUR									
Hours / Week Total Credit May Marks												
I T P			Total	Credit		Max Mar	ks					
L	Т	Р	hrs	С	CIE	CS	TOTAL					
0	0	3	48	1.5	40	60	100					
Basics	concepts o	f Electrical	Circuits &	Basics of I	Laplace trar	nsform						
Course Objectives:												
The objectives are to study:												
1.To provide practical knowledge for Time response of second order system												
f transfe	r functions	of various	systems an	nd control c	f it by diffe	rent Metho	odologies					
eristics o	f Magnetic	Amplifier,	servo mecl	nanisms wh	ich are help	oful in auto	matic control					
he stabili	ity analysis	of differer	nt system b	y using PSP	ICE and MA	TLAB						
closed le	oop perfor	mance for	the given p	lant using F	, PD, PI, PI	O Controlle	rs.					
f contro	llers/comp	ensators to	achieve d	esired speci	fications.							
<b>mes</b> : Aft	er success	ful compl	etion of th	e course, t	ne student	will be abl	e to:					
et the k	nowledge	of feedba	ck control	and trans	fer functio	n of DC se	rvo motor					
lodel th	e system a	and able to	o design th	ne controll	ers and co	mpensato	rs					
Get the knowledge about the effect of poles and zeros location for second order												
systems												
	L 0 Basics ives: are to st actical k f transfe ristics o he stabil closed le f contro mes: Aft et the k odel the stems	L       T         0       0         Basics concepts o         ives:         are to study:         actical knowledge         f transfer functions         ristics of Magnetic         ne stability analysis         closed loop perfor         f controllers/comp         mes: After success         et the knowledge         odel the system a         et the knowledge	L       T       P         0       0       3         Basics concepts of Electrical         ives:         are to study:         actical knowledge for Time ref         f transfer functions of various         pristics of Magnetic Amplifier,         ne stability analysis of differer         closed loop performance for         f controllers/compensators to         mes: After successful complet         the knowledge of feedba         odel the system and able to         et the knowledge about the         stems	LTPhrs00348Basics concepts of Electrical Circuits &ives:are to study:actical knowledge for Time response of sf transfer functions of various systems anderistics of Magnetic Amplifier, servo mechne stability analysis of different system bclosed loop performance for the given pf controllers/compensators to achieve domes: After successful completion of thet the knowledge of feedback controlodel the system and able to design theet the knowledge about the effect ofstems	L       T       P       hrs       C         0       0       3       48       1.5         Basics concepts of Electrical Circuits & Basics of I         ives:         are to study:         actical knowledge for Time response of second order         f transfer functions of various systems and control o         pristics of Magnetic Amplifier, servo mechanisms where         he stability analysis of different system by using PSPI         closed loop performance for the given plant using P         f controllers/compensators to achieve desired speci         mes: After successful completion of the course, the         et the knowledge of feedback control and transfordel the system and able to design the controller         odel the system and able to design the controller         et the knowledge about the effect of poles and         stems	LTPhrsCCIE003481.540Basics concepts of Electrical Circuits & Basics of Laplace tranives:are to study:actical knowledge for Time response of second order systemf transfer functions of various systems and control of it by different system by using PSPICE and MAclosed loop performance for the given plant using P, PD, PI, PIIf controllers/compensators to achieve desired specifications.mes: After successful completion of the course, the studentet the knowledge of feedback control and transfer functioodel the system and able to design the controllers and coet the knowledge about the effect of poles and zeros local stems	LTPhrsCCIECS003481.54060Basics concepts of Electrical Circuits & Basics of Laplace transformives:are to study:are to study:<td colspan="</td>					

CO-PO Mapping														
СО		PO PSO												
	PO	PO P												
	1	1 2 3 4 5 6 7 8 9 10 11 12 1 2												
CO1	3	2			3				2	2		3	3	3
CO2	2	3	3	3	3				3	2		3	3	3
CO3         2         2         3         2         3         2         2         3         3         2														
1: Low, 2-Medium, 3- High														

### Task-1:Time Response of Second Order System

Objective: To study the response of a second order system considering a series RLC circuit.

#### Task-2: Characteristics of Synchro pair

**Objective:** To study the characteristics of synchro transmitter-Receiver pair.

### Task-3: Characteristics of AC Servo Motor

**Objective:** To draw the characteristics of ac servo motor and to calculate parameters of motor K1 and K2 **Task-4: Characteristics of DC Servo Motor** 

### **Objective: :**

1.To obtain the Speed Vs voltage characteristics of the DC motor

2.To obtain Speed Vs Torque characteristics and Ia Vs Torque Characteristics

### Task-5: Transfer Function of DC Machine

### **Objective:**

1.To determine the Transfer function of a given DC motor.

2.To determine the transfer function of a D.C. generator after determining the various constants.

### Task-6: Characteristics of Magnetic Amplifier

**Objective:** To determine the characteristics of magnetic amplifier in three modes

1) Series connected magnetic amplifier

2) Parallel connected magnetic amplifier

3) Self saturated magnetic amplifier.

### Task-7: Lag and Lead Compensation – Magnitude and Phase Plot

Narayana Engineering College :: Gudur (Autonomous)



**Objective:** To Plot Magnitude and Phase Plot

Task-8: Effect of P, PD, PI, PID Controller on a Second Order System.

**Objective:** To study the effect of P, PD, PI, PID controllers on a second order system.

**Task-9:** Temperature Controller Using PID

**Objective:** To study the closed loop PID control in a temperature process.

### Task-10: Programmable Logic Controller.

**Objective:** To Study and Verification of Truth Tables of Logic Gates, Simple Boolean Expressions and Application of Speed Control of Motor

#### Any two simulation experiments are to be conducted:

Task-11: Linear System Analysis Using MATLAB.

**Objective:** To Determine the Time domain specification and Steady state errors for given linear systems theoretically and practically

Task-12: Stability Analysis (Bode, Root Locus, Nyquist) of Linear Time Invariant System Using MATLAB

**Objective:** To Plot the Root Locus, bode ,Nyquist) of a given Transfer Function using MATLAB

#### **Text Book(s):**

1. Simulation of Electrical and electronics Circuits using PSPICE - by M.H Rashid, M/S PHI Publications. 2. MATLAB and its Tool Books yser's manual and - Mathworks, USA

3. I. J. Nagrath and M. Gopal, "Control Systems Engineering"5th edition, New AgeInternational (P)

Limited Publishers, 2007.



### SEMESTER V

Course Code	egory	Course Title	Co	ntact ] w	Perio veek	ds per	edits	Scheme	of Examinat Marks	ion Max.
	Cat		L	Т	Р	Total	Cr	Int. Marks	Ext. Marks	Total Marks
21EE2008	PC	Digital Electronics and logic design	2	0	0	2	2	40	60	100
21EE2009	PC	Power Distribution and Distributed Generation	3	0	0	3	3	40	60	100
21EE2010	PC	Power Electronics	3	0	0	3	3	40	60	100
	OE	Open elective II	3	0	0	3	3	40	60	100
21EE4001-05	PE	Professional Elective I	3	0	0	3	3	40	60	100
21EE2504	PC	AC Machines Lab	0	0	3	3	1.5	40	60	100
21EE2505	PC	Analog Electronics and Simulation Lab	0	0	3	3	1.5	40	60	100
21EE2506	PC	Power Electronics and Simulation Lab	0	0	2	2	1	40	60	100
21CD6003	SC	Career competency Development III	0	0	2	2	1	40	60	100
21CC6002	SC	Value added course/Certificate Course II	0	0	0	0	1	40	60	100
21EE7501	PR	Internship/skill development Training I	0	0	0	0	1.5	00	100	100
21MC8002-13	MC	Mandatory course	2	0	0	2	0	00	00	00
		Counseling/Mento ring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semes			ter		20 Points		
		Total	16	0	13	29	21.5	400	700	1100



	NARAYANA ENGINEERING COLLEGE:GUDUR										
21EE2008		Ι	igital Elec	ctronics &	Logic De	esign		R2021			
III D Tash	Hours	/ Week		Total	Credit	Max Ma	ırks				
III-B. Tech	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
I-Semester	3	0	0	48	3	40	60	100			
Pre-requis	ite: Basi	c knowle	dge on nu	mber syst	em and al	gebra.					
Course Objectives:											
To study the basic concepts of number systems and binary codes.											
To minimize Boolean expressions using map and Q-M method.											
To design c	ombinati	onal and	sequential of	circuits.							
To familiar	ize Regis	ters &cou	inters using	g Flip-Flo <mark>p</mark>	DS.						
To underst	and the c	oncept o	of memory	/ organiza	tion						
Course Ou	tcomes:	After suc	cessful co	mpletion	of the cou	rse, the st	udent wil	be able to:			
CO 1	Use num	nber syste	ms, binary	codes and	Boolean	algebra to	implemen	t digital			
	circuits.	(BL-3)									
CO 2	Apply m	inimizati	on techniq	ues on Bo	olean expr	essions. (H	3L-3)				
CO 3	Design combinational circuits using logic gates. (BL-3)										
<b>CO 4</b>	Analyze synchronous sequential circuits. (BL-4)										
CO 5	Classify	the mem	ories & pro	grammab	le logic de	vices. (BI	L-2)				

	CO-PO Mapping													
PO P										PS	<b>50</b>			
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1										1	
CO2	3	3	3	1									1	
CO3	3	3	3	1									1	1
CO4	3	1	2	1									2	1
CO5	CO5 2 2 1 1 1												1	
1: Low, 2-Medium, 3- High														

	COURSE CONTENT										
MODULE – 1	NUMBER SYSTEMS & BOOLEAN ALGEBRA	10 h									
Number Systems	: Introduction, Number Systems, Number base conversions,	1's and 2's									
Complements, BC	CD code, Excess -3 codes, Gray code, ASCII code, Error Detect	tion and Correction									
Codes. Boolean A	lgebra: Basic definition, Basic theorems and properties, Boolean F	unctions, Canonical									
& Standard forms,	Logic gates, implementation of Boolean functions using logic gates	8									
At the end of the N	Adule 1, students will be able to:										
3. List numb	er systems. (BL-1)										
4. Illustrate different code conversions. (BL-2)											
5. List Theorem	rem's and properties of Boolean algebra (BL-1)										
6. Explain th	e functionality of logic gates(BL-2)										
MODULE -2	SIMPLIFICATION OF BOOLEAN FUNCTIONS	10 h									
Introduction, Karr	naugh map simplification, Don't care conditions, Prime Implicants	, Quine-McCluskey									
method Simplifica	tion, NAND & NOR Implementations, Two Level Implementations	5.									
At the end of the N	Adule 2, students will be able to:										
1. Apply bas	ic laws and De Morgan's theorems to simplify Boolean expressions	(BL-3)									
2. Explain m	ap and Q-M method to minimize Boolean expressions. (BL-2)										
3. Implement Boolean expression using universal gates. (BL-3)											
4. Implemen	t Boolean expression using two level methods. (BL-3)										

Narayana Engineering College :: Gudur (Autonomous)



MOD	ULE-3	COMBINATIONAL CIRCUITS		9 h
Introduct	tion, Desi	gn Procedure, Adders, Sub tractor, Binary Adder-Sub tractor,	BCD A	lder, Binary
Multiplie	er, Magn	itude Comparator, Multiplexers, De-multiplexers, Decoders, I	Encoders	and Code
Converte	ers.			
At the en	d of the N	Adule 3, students will be able to:		
1. I	Design co	mbinational logic circuits. (BL-3)		
2. I	mplemen	t Boolean expression using multiplexer. (BL-3)		
3. I	mplemen	t higher order MUX using lower order MUX.(BL-3)		
4. I	Design co	de converters using gates. (BL-3)		
MOD	ULE-4	SEQUENTIAL CIRCUITS		10 h
Introduct	tion, Lat	ches, Flip-flops, Master-slave flip flops, Edge-triggered f	lip-flops	, Flip-Flop
conversion	ons, Desi	gn of Synchronous Sequential Circuits: State Equations, State Ta	ble, Star	te reduction
State as	signment,	State diagram, Mealy and Moore machine models, Register	ers, Shi	ft Registers
Counters	: Synchro	nous counters, Asynchronous counters & other counters.		
At the en	d of the N	Adule 4, students will be able to:		
10. 1	Jescribe t	behavior of latches & flip flops. (BL-2)		
11. /	Analyze th	the flip-flop conversions(BL-3)		
12. /	Analyze s	ynchronous sequential circuits. (BL-3)		
13. I	Explain th	e design procedure of sequential circuits(BL-2)		
14. I	Design sy	nchronous sequential circuits using state reduction & assignment pr	rocess. (	BL-3)
MOD	ULE-5	MEMORY & PROGRAMMABLE LOGIC DEVICES		9 h
Introduct	tion, Rand	lom Access Memory, Types of RAM, Memory decoding, Read C	Inly Me	mory, Types
of ROM	, Flash n	nemory, Programmable Logic Devices (PLDs): Basic concepts,	Program	mable Read
Only Me	mory (PR	OM), Programmable Array Logic (PAL) and Programmable Logic	: Array(I	2LA).
At the en	d of the N	Adule 6, students will be able to:		
4. 1	Explain P	KOM, PAL and PLA. (BL-2)		
5. 0		$\frac{1}{2} = \frac{1}{2} = \frac{1}$		
0. 1	Ilustrate t	ne characteristics of digital IC's . (BL-2)		40.1
		Total	hours:	48 hours
Content	beyond s	vllabus:		
1. I	Represent	ation of signed & unsigned binary numbers in digital computer		
2. 1	Binary sul	ptraction operation using 1's and 2's complement methods in digita	l circuit:	8
Self-Stu	dv.			

Contents to promote self-Learning:

SNO	Module	Reference
1	Number systems	https://www.geeksforgeeks.org/digital-electronics-logic-design- tutorials/
2	Simplification of Boolean functions	https://www.electrical4u.com/simplifying-boolean-expression-using- k-map/ https://www.electronicshub.org/k-map-karnaugh-map
3	Combinational circuits	https://www.allaboutcircuits.com/textbook/digital/
4	Sequential Circuits	https://www.electronics-tutorials.ws/sequential/seq_1.html https://technobyte.org/counters-up-down-synchronous-asynchronous/
5	Programmable logic devices	https://www.tutorialspoint.com/digital_circuits/digital_circuits_progra mmable_logic_devices.htm

### Text Book(s):

1. M. Morris Mano, M.D. Ciletti, "Digital Design", 5th edition, Pearson, 2018.

2 John F Wakely Digital Design Principles And Practices, Pearson Publication, Fourth edition Narayana Engineering College :: Gudur (Autonomous)



3 Anil K. Maini, "Digital Electronics: Principles, Devices and Applications", Willey, 2007

### **Reference Book(s):**

- 1. Anand Kumar, Switching Theory and Logic Design, PHI,2008
- 2. John. M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 3. R. P. Jain, "Modern Digital Electronics", 4th edition, McGraw Hill Education (India Private Limited), 2012.

### Online Resources / Web References:

- 1. <u>https://nptel.ac.in/courses/108/105/108105113/</u> (IIT- Kharagpur digital Circuits)
- 2. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-004-computation-structures-spring-2017/c4/</u>
- 3. <u>https://nptel.ac.in/courses/106/105/106105185/(</u>IIT- Kharagpur Switching Circuits and Logic Design)
- 4. https://www.researchgate.net/publication/264005171_Digital_Electronics
- 5. https://www.academia.edu/37445384/Anil K. Maini Digital Electronics Principles 01.04.16.pdf
- 6. https://intuitionke.weebly.com/uploads/1/1/8/2/118271274/digital principles switching theory.pdf
- 7. <u>https://www.javatpoint.com/digital-electronics</u>



NARAYANA ENGINEERING COLLEGE:GUDUR											
21EE2009	POW	ER DISTR	IBUTION	N & DIST	RIBUTED	<b>GENER</b>	ATION	R2021			
III-B.Tech	Н	ours / Wee	k	Total	Credit		Max Mar	ks			
	L	Т	Р	hrs	С	CIE	CIE PD&DG TO				
I-Semester	3	0	0	48	3	40 60 100					
Pre-requisite: Nil											
Course Objectives:											
1. To illustrate the Necessity of distributed generation											
2.	To Understand different renewable energy sources										
3.	To Understand the control aspects & Power quality issues of DG's										
4.	To understand the structure of Electrical distribution system and various factors										
5.	To unders	stand the to	echnical is	sues of su	bstations su	uch as loca	ation, rating	gs & Bus bar			
	arrangem	ents									
Course Out	comes: Af	ter success	ful compl	etion of th	e course, t	he studen	t will be abl	e to:			
CO 1	Compare	the advan	tages & di	sadvantag	<b>ges</b> of vario	us distrib	uted genera	ation.			
CO 2	Describe	various Dis	stributed (	Generatio	n systems,	Micro-grid	and storage	ge devices			
CO 3	Illustrate	the Econo	mic and c	ontrol asp	ects of DGs	6					
CO 4	Analyze	the differe	ent load	characteri	stics, distr	ibution fa	actors & N	<b>Aodelling</b> of			
	distributio	on system.									
CO 5	Design of	Distributio	on Feeders	s, Voltage	Drop and p	ower loss	in D.C Distr	ibutors.			

	CO-PO Mapping													
СО						Р	0						PS	50
	PO	PO P												
	1	1     2     3     4     5     6     7     8     9     10     11     12     1     2												
CO1	3	2	2	2	2								3	2
CO2	2	3	2	2	2								3	2
CO3	3	3	2	2	2								3	2
CO4	2	2	2	2	2								3	2
CO5	CO5         2         2         2         2         2         3         2												2	
1: Low, 2-Medium, 3- High														

#### **COURSE CONTENT**

#### MODULE – 1

### Need for Distribution Generation

Distributed generation, features and operations, advantages and disadvantages of DG, Comparison among the DG Technologies, Non conventional and renewable energy sources. Grid Interconnection- Standards of interconnection, Recent trends in power electronic DG interconnection.

### MODULE -2

#### **Distribution Generation Resources**

Introduction - Solar photovoltaic (PV) systems, Photovoltaic power characteristics – Wind energy conversion systems (WECS), Biomass Power, Fuel Cells, Tidal power generation schemes, Hydro power schemes - Storage devices: Batteries Storage, ultra-capacitors, flywheels.

### **MODULE-3**

#### Economic and control aspects of DGs

Market facts, issues and challenges – Limitations of DGs – Voltage control techniques, Reactive power control, Harmonics, Power quality issues – Reliability of DG based systems.

### **MODULE-4**



#### Introduction To Electrical Distribution Systems

Introduction to Distribution Systems, Coincidence Factor, Contribution Factor, Relationship between the Load Factor and Loss Factor, Classification of Loads (Residential, Commercial, Agricultural and Industrial), Load Modeling and Characteristics Power Factor Improvement: Causes of Low P.F -Methods of Improving P.F

#### **MODULE-5**

#### CLASSIFICATION & DESIGN FEATURES OF DISTRIBUTION SYSTEM

Classification of Distribution Systems - Comparison of DC & AC and Under-Ground & Over -Head Distribution Systems. Voltage Drop and power loss in D.C Distributors.

### SUBSTATIONS AND BUSBAR ARRANGEMENT

Location of Substations, Classification of Substations, Single Bus Bar, Sectionalized Single Bus Bar, Main and Transfer Bus Bar, One and Half Breaker System.

Total hours: 48 hours

#### Term work:

Field work to EHV Substation, Wind & Solar Power plants/ Tutorials/ Quiz's

### Content beyond syllabus:

1. Distribution Automation

#### Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Distributed	CO1	https://www.dg.history.vt.edu/ch1/introduction.html
	Generation		
2	Wind Energy	CO2	https://www.dg.history.vt.edu/ch2/conversion.html
	Conversion		https://www.dg.history.vt.edu/ch2/storage.html
	system		
3	Reliability of DG	CO3	https://b-ok.asia/book/2941113/af547e
	system		
4	Distribution	CO4	https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5
	Systems		&lesson=49
			https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5
			&lesson=9
5	Classification &	CO5	https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5&less
	Design of DS		<u>on=51</u>
	-		https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5&less
			On=0 https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=7&less
			on=13
			https://www.youtube.com/watch?v=_iz8ZkjD7z8
			https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5&lesson=50
			https://onlinecourses.nptel.ac.in/noc18_ee15/unit/unit=7&lesson=12 https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=7&lesson=14
			https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5&lesson=49



#### Text Book(s):

1. H. Lee Willis, Walter G. Scott , 'Distributed Power Generation – Planning and Evaluation', Marcel Decker Press, 2000.

2. G. Masters, Renewable and Efficient Electric Power Systems, IEEE- John Wiley and Sons Ltd. Publishers, 2nd Edition, 2013.

3. Electric Power Distribution Engineering, Turan Gonen, CRC Press, 3rd Edition,2014.

4. Electric Power Distribution, A.S. Pabla, Tata Mc Graw Hill (India) Pvt. Ltd., 6th Edition, 2011.

#### Reference Book(s):

 "Fundamentals of renewable energy systems "by D.Mukherjee, S.Chakrabarti, New Age International Publishers.

2. Electrical Power Distribution Systems, V. Kamaraju, Jain Book Depot. 2012.

3. Electrical Power Systems for Industrial Plants, Kamalesh Das, JAICO Publishing House, 2008.

#### Online Resources:

1. https://b-ok.asia/book/1117604/f01d10

2 https://b-ok.asia/book/2729267/f90c96

#### Web Resources:

1. <u>https://nptel.ac.in/courses/108/102/108102047/</u>

2.<u>https://nptel.ac.in/courses/108/107/108107112/</u>

3. <u>https://www.youtube.com/watch?v=ptiaNGkuylY</u>



NARAYANA ENGINEERING COLLEGE:GUDUR												
21EE2010			POWER	R ELECT	RONICS			R2021				
III-B.Tech	Н	ours / Wee	ek	Total	Credit		Max Mar	rks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
I-Semester	3	0	0	48	3	40	60	100				
Pre-requi	site: Nil											
Course O	Course Objectives:											
<ol> <li>To understand the various applications of Power electronic devices for conversion, control and conditioning of the electrical power and to get an overview of different types of power semiconductor devices and their dynamic characteristics.</li> <li>To understand the operation, characteristics and performance parameters of controlled rectifiers</li> <li>To study the operation, switching techniques and basics topologies of DC-DC switching regulators</li> <li>To learn the different modulation techniques of pulse width modulated inverters and</li> </ol>												
Course O	utcomes:	After suc	cessful co	ompletion	of the cou	rse, the st	udent wil	l be able to:				
CO 1	Describe	<mark>e</mark> the oper	<b>ation</b> of p	ower semi	conductor	devices						
CO 2	Illustrate the construction and operation of silicon controlled rectifier											
CO 3	Analyze	the vario	us uncont	rolled rec	tifiers and	l design si	uitable filt	ter circuits				
CO 4	Demonst	trate the o	peration o	f the DC-I	DC conver	ers and in	verters					

**CO 5 Summarise the operation** of AC controllers.

	CO-PO Mapping													
СО		PO PSO												50
	PO	PO P												PSO
	1	1 2 3 4 5 6 7 8 9 10 11 12 1 2												
CO1	3	3 2 3 3 3 2												
CO2	3	2	3										3	2
CO3	3	2	3										3	2
CO4	<b>CO4</b> 3 2 3 3 3 2 3 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3													
CO5     3     2     3     3     2														
1: Low, 2-Medium, 3- High														

### **COURSE CONTENT**

### MODULE – 1

### Power Semiconductor Devices

Concept of power electronics, application of power electronics, advantages and disadvantages of power electronics converters, power diodes, power transistors, power MOSFETS, IGBT and GTO, uncontrolled converters.

#### **MODULE -2**

### Silicon Controlled Rectifier:

Thyristors, brief description of members of Thyristor family with symbol, V-I characteristics and applications of SCR. Two transistor model of SCR, SCR turn on methods, switching characteristics, ratings, gate triggering circuits, different commutation techniques of SCR.

### **MODULE-3**

### Phase controlled converters:

Principle of operation of single phase and three phase half wave, half controlled, fullcontrolled converters with R, R-L and RLE loads, effects of freewheeling diodes and

source inductance on the performance of converters.

Narayana Engineering College :: Gudur (Autonomous)



#### MODULE-4

### DC-DC converters and Inverters

Principle of operation, control strategies, step down & step up choppers, types of choppers circuits based on quadrant of operation & commutation technique, Definition, classification of inverters based on nature of input source, wave shape of output voltage, Principle of operation of phase and three phase bridge inverter with R and R-L loads,

#### **MODULE-5**

### AC controllers:

Principle of on-off and phase control, single phase and three phase AC Voltage controllers with R and R-L loads. Principle of operation of cycloconverters, single phase to single phase step up and step down cycloconverters.

Total hours: 48 hours

#### Term work:

Report submission on Multilevel converters with MATLAB-Simulation.

#### **Content beyond syllabus:**

1. Three phase cycloconverters

#### Self-Study:

Contents to promote self-Learning:

SN	Торіс	CO	Reference
0			
1	IGBT	CO1	https://www.youtube.com/watch?v=ekSbhm410Go
2	Commutation	CO2	https://www.youtube.com/watch?v=mf-97ZXrOz0
	techniques of SCR		https://www.youtube.com/watch?v=h7cu27etdmg
			https://www.youtube.com/watch?v=WX5G0RHozAs
			https://www.youtube.com/watch?v=d4sbVc-r7I4
3	Three phase	CO3	https://www.youtube.com/watch?v=VYmd3KKfCQQ
	converters		
4	Switching mode	CO4	https://www.youtube.com/watch?v=Q7cTuZIH8IA
	regulators		https://www.youtube.com/watch?v=I0ZbC7uCe9A
			https://www.youtube.com/watch?v=YiYQjdARZ7I
5	Resonant Pulse	CO5	https://www.youtube.com/watch?v=AISpcLLiOPA
	inverters		

#### **Text Book(s):**

- 1. Power Electronics, M.D. Singh and K.B. Khanchandani, Tata Mc Graw Hill. 2007
- 2. Power Electronics, M.H. Rashid, PHI, 3rd Edition
- 4. Power Electronics, P.S. Bhimra, Khanna Publishers, 3rd Edition.

#### **Reference Book(s):**

- 1. Modern Power Electronics & AC drives, B.K. Bose, Prentice Hall
- 2. Power Electronics, V.R. Moorthi, Oxford, 2005
- 3. Power Electronics, Mohan, Undeland & Riobbins, Wiley India
- 4. Element of power Electronics, Phillip T Krein, Oxford, 2007



## **Online Resources:**

1.

https://books.google.co.in/books?id=0_D6gfUHjcEC&printsec=frontcover#v=onepage&q&f=false 2. https://nptel.ac.in/courses/108/105/108105066/

### Web Resources:

1.<u>https://www.youtube.com/watch?v=ZbvWe9xBu3Q&list=PLp6ek2hDcoND7i5-</u>

DAD9mPmYF1Wg6ROdO

2. <u>https://www.youtube.com/watch?v=1Auay7ja2oY&list=PLA07ACBDE053A8229</u>



NARAYANA ENGINEERING COLLEGE:GUDUR												
21EE2504				AC MACHI	NES Lab			R2021				
III-B.Tech	Н	ours / Wee	k	Total	Credit		Max Mar	ks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
I-Semester	0	0	3	30	1.5	40	60	100				
Pre-requisit	e: Nil											
Course Objectives:												
1. To find t	1. To find the performance of induction motor by calculating the efficiency.											
2. To find o	direct and	quadrature	axis react	ances of s	synchronou	is motor.						
3. To find v	l voltage regulation by using various methods on synchronous machine											
4. To detern	nine 'v' and 'inverted v' curves of synchronous motor.											
5. TO find	d the efficiency and power factor from circle diagram byconducting no load and											
blocked fo	blocked rotor test on 3-phase induction motor.											
Course Out	Course Outcomers After successful completion of the source, the student will be able to:											
	Find the	porforman	a charact	oristics of	the 3 phase	a induction	motor					
	Draw the	direct and	l quadratu	ra avis raa	tance and	regulation	of					
02	Synchron	ous machi	n quauratur no	le axis lead	stance and	regulation	1 01					
CO 3		the Equiv	alent Circi	uit Darame	ters of a S	ingle Phas	• Induction	n Motor				
	Toknow	how to dr	aicin Circ		d dotormin	ingle Thas		matara hu				
04	10 KIIOW	hase squir	rel core i	nduction r	u determin	le the elect	incai parai	neters by				
<b>CO 5</b>	Know the	voltage r	aulation (	of synchro	nous mach	ine by usi	ng Synchr	onous				
05	Impedan	re Method	guiation	JI Syncino	nous mach	inc by usi	ing Synchro	onous				
0.6	Know the	voltage r	equilation (	of synchro	nous mach	ine hv usi	ng MMF	Method				
	Know the	voltage r	- gulation (	of synchro	nous mach	ine by usi	ng 7PF M	ethod				
CO %	Know the voltage regulation of synchronous machine by using ZPF. Method.											
	To know how to draw the V and A surgice of surghranging motor.											
	Vnow the concretion of losses of the 1 phase transformer											
CO 10	Know the	e separatio	n of losses	of the 1-p	onase trans	tormer.						

TASK-1 - Brake Test on Three Phase Induction Motor.

TASK -2 No-Load & Blocked Rotor Tests on Three Phase Induction Motor.

Task -3 Regulation of a Three Phase Alternator by using SynchronousImpedance Method

& MMF Method.

TASK-4 Regulation of a Three Phase Alternator by using ZPF & ASA Method.

TASK-5 Determination of Xd and Xq of a Salient Pole Synchronous Machine

TASK-6 V and  $\Lambda$  curves of synchronous motor.

TASK-7 Parallel operation of synchronous Generators.

TASK-8 Equivalent Circuit of a Single Phase Induction Motor.

TASK-9 Load test on a Single Phase Induction Motor.

TASK -10 Study of induction motor starters

#### Additional Experiments:

TASK -11Load Test On 3-Phase Ac Slip ring Induction Motor

TASK -12 Scott Connection Of Transformers



### Text Book(s):

- 1. Electrical Machinery, P.S. Bimbhra, Khanna Publishers, 7th Edition, 2011.
- 2. Electrical Machines, S K Bhattacharya, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition,

2014, 3rd Reprint 2015.

### **Reference Book(s):**

- 1. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw HillEducation, 2013.
- 2. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.



Power Electronics and Simulation Lab       R2021         IIII-Brech       Hours / Week       Total       Cedit       Max Marks         IIII-Brech       I Total       Cedit       Max Marks         Pre-requisite:       Basic of Electrical circuit         Course Objectives:         The objectives are to study:         1.       The characteristics of power electronic devices with gate firing circuits         2.       Various forced commutation techniques       3.       The operation of single-phase voltage controller, converters and Inverters circuits with R and RL loads         4.       Analyze the TPS7A4901, TPS7A8300 and TPS54160 buck regulators       List of Experiments         TASK - 1 Single Phase AC Voltage Controller with R and RL Loads       TASK - 3 Forced Commutation Greuits (Class A, Class B, Class C, Class D and Class E)         TASK - 5 Single Phase Parallel Inverter with R and RL Loads       TASK - 5 Single Phase Parallel Inverter with R and RL Loads         TASK - 6 Single Phase Elar Controller Converter       TASK - 8 Illumination control / Fan control using TRIAC         NIMultisin Simulation of Single Phase Half Controlled Converter         TASK - 1 Simulation of Single Phase Half Controlled Converter       TASK - 10 Simulation of Single Phase Half Controlled Converter	NARAYANA ENGINEERING COLLEGE:GUDUR															
Hi-B.Tech         Hours / Week         Total         Credit         Max Marks           1-Semeater         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<	21EE2506			Po	wer E	lectro	onics	and S	Simul	ation	Lab			R2021	L	
LTPhrsCCIESEETOTALPer-requisite:Basic of Electrical circuitCourse Objectives:The objectives are to study:1. The characteristics of power electronic devices with gate firing circuits2Various forced commutation techniques3. The operation of single-phase voltage controller, converters and Inverters circuits with R and RL loads4. Analyze the TPS7A4901, TPS7A8300 and TPS54160 buck regulatorsList of ExperimentsTASK-1 Single Phase AC Voltage Controller with R and RL LoadsTASK-3 Engle Phase AC Commutation Circuits (Class A, Class B, Class C, Class D and Class E)TASK-4 Buck ConvertorTASK-5 Single Phase Parallel Inverter with R and RL LoadsTASK-5 Single Phase Parallel Inverter with R and RL LoadsTASK-6 Single Phase Parallel Inverter with R and RL LoadsTASK-1 Simulation extrements:TASK-1 Simulation of Single Phase Fully Controlled ConverterTASK-1 Simulation of Single Phase Fully Controlled ConverterTASK-1 2 Simulation of Single Phase AC Voltage ControllerCourse, students will be able to1. The student will analyze the characteristics of power semiconductor devices & P SpiceSimulation of Single Phase AC Voltage ControllerCourse, students will be able to1. The student will analyze the characteristics of power semico	III-B.Tech		Но	urs / V	Veek		Тс	otal	Credi	t		M	lax Ma	rks		
Lisenser       P       P       30       [Lis       p0       p0       p00         Pre-reguisite:       Basic of Electrical circuit         Course Objectives are to study:       1.       The characteristics of power electronic devices with gate firing circuits         2.       Various forced commutation techniques       3.       The operation of single-phase voltage controller, converters and Inverters circuits with R and RL loads         4.       Analyze the TPS7A4901, TPS7A8300 and TPS54160 buck regulators       Elist of Experiments         TASK - 1 Single Phase AC Voltage Controller with R and RL Loads       TASK - 20 Cones Chopper with R and RL Loads         TASK - 2 Cones Chopper with R and RL Loads       TASK - 3 Forced Commutation Circuits (Class A, Class B, Class C, Class D and Class E)         TASK - 4 Buck Convertor       TASK - 5 Single Phase Parallel Inverter with R and RL Loads         TASK - 5 Single Phase Series Inverter with R and RL Loads       TASK - 6 Simulation of Single Phase Huly Controlled Converter         TASK - 8 Illumination control / Fan control using TRIAC       Nultisim Simulation Experiments:         TASK - 1 Simulation of Single Phase RUly Controlled Converter       TASK - 11 Simulation of Single Phase RUly Controlled Converter         TASK - 12 Simulation of Single Phase AC Voltage Controller       Convertor devices & P Spice Simulation.         1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.		L		Т		Р	h	irs	C	10	CIE		SEE	TO	TAL	
Pre-requisite: basic of Electrical Circuit Course Objectives: The objectives are to study: 1. The characteristics of power electronic devices with gate firing circuits 2. Various forced commutation techniques 3. The operation of single-phase voltage controller, converters and Inverters circuits with R and RL loads 4. Analyze the TPS7A4901, TPS7A8300 and TPS54160 buck regulators List of Experiments TASK- 1 Single Phase AC Voltage Controller with R and RL Loads TASK- 2 DC Jones Chopper with R and RL Loads TASK- 3 Forced Commutation Circuits (Class A, Class B, Class C, Class D and Class E) TASK- 5 Single Phase Parallel Inverter with R and RL Loads TASK- 5 Single Phase Parallel Inverter with R and RL Loads TASK- 7 Single Phase Parallel Inverter with R and RL Loads TASK- 7 Single Phase Parallel Inverter with R and RL Loads TASK- 7 Single Phase Dual Converter with R and RL Loads TASK- 8 Illumination control / Fan control using TRIAC NI Multisim Simulation Experiments: TASK- 10 Simulation of Single Phase Half Controlled Converter TASK- 11 Simulation of Single Phase Fully Controlled Converter TASK- 12 Simulation of Single Phase AC Voltage Controller Course Outcomes: At the end of the course, students will be able to 1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation. 2. To Perform Laboratory Experiments practically. 3. To carry out laboratory experiments on simulation & Kits. Text Books 1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003. 2. Simulation of Power Electronic Circuits by M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan. CO-PO Mapping CO CO 1 2 2 3 4 2 2 2 3 3 2 CO 2 3 3 2 2 2 2 3 3 2 CO 3 3 3 2 2 2 2 3 3 2 CO 3 3 3 2 2 2 2 3 3 2 CO 3 3 3 2 2 2 2 3 3 2 CO 3 3 3 2 2 2 3 3 2 CO 3 3 3 3 2 2 3 3 3 3 3 C TATER ANDER CO CO CO CO CO CO CO CO CO CO	I-Semester	0	0 Decia	- f El -	3		3	30	1.5	40		60		100		
Control of the control	Pre-requis	ite:	Basic	of Elec	ctrical	circu	lt									
The object to study. The operation of single-phase voltage controller, converters and Inverters circuits with R and RL loads 3. The operation of single-phase voltage controller, converters and Inverters circuits with R and RL loads 4. Analyze the TPS7A4901, TPS7A8300 and TPS54160 buck regulators List of Experiments TASK-1 Single Phase AC Voltage Controller with R and RL Loads TASK-2 DC Jones Chopper with R and RL Loads TASK-3 Forced Commutation Circuits (Class A, Class B, Class C, Class D and Class E) TASK-4 Buck Convertor TASK-5 Single Phase Parallel Inverter with R and RL Loads TASK-6 Single Phase Parallel Inverter with R and RL Loads TASK-7 Single Phase Parallel Inverter with R and RL Loads TASK-7 Single Phase Dual Converter with R Loads TASK-8 Illumination control / Fan control using TRIAC NI Multism Simulation FExperiments: TASK-9 Simulation of Single Phase Fully Controlled Converter TASK-10 Simulation of Single Phase Fully Controlled Converter TASK-10 Simulation of Single Phase AC Voltage Controller Course Outcomes: At the end of the course, students will be able to 1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation. 2. To Perform Laboratory Experiments practically. 3. To carry out laboratory experiments on simulation & Kits. Text Books 1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003. 2. Simulation of Power Electronic Circuits by M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan. CO-PO Mapping CO TO PO	The objecti	yes ar	e to st	udv												
<ul> <li>In the characteristics of power declarate control with gate hing endults</li> <li>Warious forced commutation techniques</li> <li>The operation of single-phase voltage controller, converters and Inverters circuits with R and RL loads</li> <li>Analyze the TPS7A4901, TPS7A8300 and TPS54160 buck regulators</li> <li>List of Experiments</li> <li>TASK-1 Single Phase AC Voltage Controller with R and RL Loads</li> <li>TASK-3 Forced Commutation Circuits (Class A, Class B, Class C, Class D and Class E)</li> <li>TASK-4 Buck Convertor</li> <li>TASK-5 Single Phase Parallel Inverter with R and RL Loads</li> <li>TASK-7 Single Phase Parallel Inverter with R and RL Loads</li> <li>TASK-7 Single Phase Parallel Inverter with R and RL Loads</li> <li>TASK-7 Single Phase Parallel Inverter with R and RL Loads</li> <li>TASK-7 Single Phase Parallel Inverter with R and RL Loads</li> <li>TASK-7 Single Phase Parallel Inverter with R and RL Loads</li> <li>TASK-7 Single Phase Parallel Inverter with R and RL Loads</li> <li>TASK-8 Illumination control / Fan control using TRIAC</li> <li>NI Multisin Simulation of Single Phase Fully Controlled Converter</li> <li>TASK-12 Simulation of Single Phase AC Voltage Controller</li> <li>Course Outcomes:</li> <li>At the end of the course, students will be able to</li> <li>1. The student will analyze the characteristics of power semiconductor devices &amp; P Spice Simulation.</li> <li>2. To Perform Laboratory Experiments practically.</li> <li>3. To carry out laboratory experiments on simulation &amp; Kits.</li> <li>Text Books</li> <li>2. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.</li> <li>2. Simulation of Power Electronic Circuits by M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.</li> <li>COPO Mapping</li> <li>CO</li> <li>PO</li> <li>PO</li> <li>PO</li> <li>PO</li> <li>PO</li></ul>	1 The cl	1. The characteristics of power electronic devices with gate firing circuits														
<ul> <li>The operation of single-phase voltage controller, converters and Inverters circuits with R and RL loads</li> <li>Analyze the TPS7A4901, TPS7A8300 and TPS54160 buck regulators</li> <li>List of Experiments</li> <li>TASK-1 Single Phase AC Voltage Controller with R and RL Loads</li> <li>TASK-1 Single Phase Parallel Inverter with R and RL Loads</li> <li>TASK-5 Single Phase Parallel Inverter with R and RL Loads</li> <li>TASK-5 Single Phase Parallel Inverter with R and RL Loads</li> <li>TASK-6 Single Phase Series Inverter with R and RL Loads</li> <li>TASK-7 Single Phase Dual Converter with R and RL Loads</li> <li>TASK-6 Single Phase Dual Converter with R and RL Loads</li> <li>TASK-7 Single Phase Dual Converter with R and RL Loads</li> <li>TASK-7 Single Phase Dual Converter with R and RL Loads</li> <li>TASK-7 Single Phase Dual Converter with R and RL Loads</li> <li>TASK-7 Single Phase Dual Converter with R and RL Loads</li> <li>TASK-7 Single Phase Dual Converter with R and RL Loads</li> <li>TASK-7 Single Phase Dual Converter With R and RL Loads</li> <li>TASK-7 Single Phase Pase Pase Fully Controlled Converter</li> <li>TASK-8 Simulation of Single Phase Half Controlled Converter</li> <li>TASK-12 Simulation of Single Phase AC Voltage Controller</li> <li>Course Outcomes:</li> <li>At the end of the course, students will be able to</li> <li>1. The student will analyze the characteristics of power semiconductor devices &amp; P Spice Simulation.</li> <li>2. To Perform Laboratory Experiments practically.</li> <li>3. To carry out laboratory experiments on simulation &amp; Kits.</li> <li>Text Books</li> <li>1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.</li> <li>2. Simulation of Power Electronic Circuits by M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.</li> <li>CO-PO PO P</li></ul>	2. Various forced commutation techniques															
3. The optimizer of any prime prime prime controlling content of the prime of	3. The operation of single-phase voltage controller, converters and Inverters															
A. Analyze the TPS7A4901, TPS7A8300 and TPS54160 buck regulators  List of Experiments TASK-1 Single Phase AC Voltage Controller with R and RL Loads TASK-2 DC Jones Chopper with R and RL Loads TASK-3 Forced Commutation Circuits (Class A, Class B, Class C, Class D and Class E) TASK-4 Buck Convertor TASK-5 Single Phase Parallel Inverter with R and RL Loads TASK-6 Single Phase Parallel Inverter with R and RL Loads TASK-7 Single Phase Series Inverter with R and RL Loads TASK-7 Single Phase Dual Converter with R RL Loads TASK-7 Single Phase Dual Converter with R RL Loads TASK-7 Single Phase Dual Converter with RL Loads TASK-7 Single Phase Dual Converter with RL Loads TASK-7 Single Phase Parallel Inverter with R RL Converter TASK-9 Simulation of Single Phase Fully Controlled Converter TASK-10 Simulation of Single Phase Fully Controlled Converter TASK-11 Simulation of Single Phase AC Voltage Controller Course Outcomes: A the end of the course, students will be able to 1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation. 2. To Perform Laboratory Experiments practically. 3. To carry out laboratory experiments on simulation & Kits. Text Books 1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003. 2. Simulation of Power Electronic Circuits by M. B. Patil, M. C. Chandorkar, V. Ramanarayanan, V.T. Ranganathan. CO-PO Mapure CO	circuits with R and RL loads															
The second of the second the second of the second the second of the sec	4. Analyze the TPS7A4901, TPS7A8300 and TPS54160 buck regulators															
TASK - 1 Single Phase AC Voltage Controller with R and RL Loads         TASK - 2 DC Jones Chopper with R and RL Loads         TASK - 3 Forced Commutation Circuits (Class A, Class B, Class C, Class D and Class E)         TASK - 4 Buck Convertor         TASK - 5 Single Phase Parallel Inverter with R and RL Loads         TASK - 5 Single Phase Parallel Inverter with R and RL Loads         TASK - 7 Single Phase Parallel Inverter with R and RL Loads         TASK - 7 Single Phase Parallel Inverter with R and RL Loads         TASK - 7 Single Phase Parallel Inverter with R L Loads         TASK - 8 Illumination control / Fan control using TRIAC         NI Multisim Simulation Experiments:         TASK - 9 Simulation of Single Phase Half Controlled Converter         TASK - 10 Simulation of Single Phase Fully Controlled Converter         TASK - 12 Simulation of Single Phase AC Voltage Controller         Course Outcomes:         At the end of the course, students will be able to         1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.         Coter form Laboratory Experiments practically.         3. To carry out laboratory experiments on simulation & Kits.         Text Books         1. Muhammad H.	List of Experiments															
TASK- 2 DC Jones Chopper with R and RL LoadsTASK- 3 Forced Commutation Circuits (Class A, Class B, Class C, Class D and Class E)TASK- 4 Buck ConvertorTASK- 5 Single Phase Parallel Inverter with R and RL LoadsTASK- 7 Single Phase Series Inverter with R and RL LoadsTASK- 8 Single Phase Dual Converter with R LoadsTASK- 8 Single Phase Dual Converter with RL LoadsTASK- 8 Single Phase Dual Converter with RL LoadsTASK- 9 Simulation control / Fan control using TRIACNI Multisim Simulation Experiments:TASK- 10 Simulation of Single Phase Half Controlled ConverterTASK- 11 Simulation of Single Phase Fully Controlled ConverterTASK- 12 Simulation of Single Phase AC Voltage ControllerCourse Outcomes:At the end of the course, students will be able to1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.2. To Perform Laboratory Experiments practically.3. To carry out laboratory experiments on simulation & Kits.Text Books1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.2. Simulation of Power Electronic Circuits byM. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.COOPO MappingCOOICOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPO1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.	TASK-1 S	ingle F	hase A	- AC Vo	ltage C	Control	ler wit	h R an	d RL I	Loads						
TASK- 3 Forced Commutation Circuits (Class A, Class B, Class C, Class D and Class E)TASK- 4 Buck ConvertorTASK- 5 Single Phase Parallel Inverter with R and RL LoadsTASK- 6 Single Phase Dual Converter with R and RL LoadsTASK- 7 Single Phase Dual Converter with RL LoadsTASK- 8 Illumination control / Fan control using TRIACNI Multisim Simulation Experiments:TASK- 9 Simulation of Single Phase Half Controlled ConverterTASK- 10 Simulation of Single Phase Half Controlled ConverterTASK- 11 Simulation of Single Phase Fully Controlled ConverterTASK- 12 Simulation of Single Phase AC Voltage ControllerCourse Outcomes:At the end of the course, students will be able to1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.2. To Perform Laboratory Experiments practically.3. To carry out laboratory experiments on simulation & Kits.Text Books1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.2. Simulation of Power Electronic Circuits byM. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.CO-PO MappingCOPO PO PS0 POQ PO PO PO PO PO PO PO PO PS0 QQ PO PO PO PO PO PO PO PS0 PO PS0 QQ PO PO PO PO PO PO PO PS0 PO PS0 PS0Q PO PO PO PO PO PO PS0 PO PS0 PS0 PS0Q PO PO PO PO PO PO PO PS0 PO PS0 PS0 PS0Q PO PO PO PO PO PO P	TASK-2 D	C Jone	es Cho	pper w	vith R a	and RI	Load	s								
TASK- 4 Buck Convertor         TASK- 5 Single Phase Parallel Inverter with R and RL Loads         TASK- 6 Single Phase Series Inverter with R and RL Loads         TASK- 7 Single Phase Dual Converter with RL Loads         TASK- 8 Illumination control / Fan control using TRIAC <b>NI Multisim Simulation Experiments:</b> TASK- 9 Simulation of Single Phase Half Controlled Converter         TASK- 10 Simulation of Single Phase Fully Controlled Converter         TASK- 12 Simulation of Single Phase AC Voltage Controller <b>Course Outcomes:</b> At the end of the course, students will be able to         1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.         2. To Perform Laboratory Experiments practically.         3. To carry out laboratory experiments on simulation & Kits. <b>Text Books</b> 1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.         2. Simulation of Power Electronic Circuits by       M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan. <b>CO-PO Mapping</b> COI       1       2       2       3       2         COI       3       2       4       5       6       7       8       9       10       11       12       2         CO<	TASK-3 F	orced	Comm	utation	n Circu	its (Cl	ass A,	Class	B, Clas	ss C. C	lass D	and C	lass E)	)		
TASK- 5 Single Phase Parallel Inverter with R and RL Loads         TASK- 6 Single Phase Series Inverter with R and RL Loads         TASK- 7 Single Phase Dual Converter with RL Loads         TASK- 8 Illumination control / Fan control using TRIAC         NI Multisim Simulation Experiments:         TASK- 9 Simulation of Single Phase Half Controlled Converter         TASK- 10 Simulation of Single Phase Fully Controlled Converter         TASK- 11 Simulation of Single Phase Fully Controlled Converter         TASK- 12 Simulation of Single Phase AC Voltage Controller         Course Outcomes:         At the end of the course, students will be able to         1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.         2. To Perform Laboratory Experiments practically.         3. To carry out laboratory experiments on simulation & Kits.         Text Books         1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.         2. Simulation of Power Electronic Circuits by       M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.         CO-PO Mapping       PO       PO       PO       PO       PO       PO       PO       PSO         C01       3       2       4       5       6       7       8       9       10       11       2 </td <td>TASK-4 B</td> <td>uck Co</td> <td>onvert</td> <td>or</td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>	TASK-4 B	uck Co	onvert	or			,						,			
TASK- 6 Single Phase Series Inverter with R and RL Loads         TASK- 7 Single Phase Dual Converter with RL Loads       TASK- 8 Illumination control / Fan control using TRIAC         NI Multisim Simulation Experiments:         TASK- 9 Simulation of Single Phase Half Controlled Converter         TASK- 10 Simulation of Single Phase Fully Controlled Converter         TASK- 10 Simulation of Single Phase Fully Controlled Converter         TASK- 11 Simulation of Single Phase AC Voltage Controller         Course Outcomes:         At the end of the course, students will be able to         1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.         2. To Perform Laboratory Experiments practically.         3. To carry out laboratory experiments on simulation & Kits.         Text Books         1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.         2. Simulation of Power Electronic Circuits by       M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.         PO       PO       PO       PSO         C0-PO Mapping       1       1       2       2       3       2         2       2       3       4       5       6       7       8       9       10       11	TASK-5 S	TASK - 5 Single Phase Parallel Inverter with R and RL Loads														
TASK- 7 Single Phase Dual Converter with RL Loads         TASK- 8 Illumination control / Fan control using TRIAC         NI Multisim Simulation Experiments:         TASK- 9 Simulation of Single Phase Half Controlled Converter         TASK- 10 Simulation of Single Phase Fully Controlled Converter         TASK- 11 Simulation of PWM Inverter         TASK- 12 Simulation of Single Phase AC Voltage Controller         Course Outcomes:         At the end of the course, students will be able to         1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.         2. To Perform Laboratory Experiments practically.         3. To carry out laboratory experiments on simulation & Kits.         Text Books         1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.         2. Simulation of Power Electronic Circuits by       M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.         CO       PO       PO       PO       PO       PO         CO1       3       2       2       3       2       2       3       2         2. Co1       3       2       2       2       3       2       2       3       2	TASK- 6 Single Phase Series Inverter with R and RL Loads															
TASK- 8 Illumination control / Fan control using TRIACNI Multisim Simulation Experiments:TASK- 9 Simulation of Single Phase Half Controlled ConverterTASK- 10 Simulation of Single Phase Fully Controlled ConverterTASK- 10 Simulation of PWM InverterTASK- 12 Simulation of Single Phase AC Voltage ControllerCourse Outcomes:At the end of the course, students will be able to1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.2. To Perform Laboratory Experiments practically.3. To carry out laboratory experiments on simulation & Kits.Text Books1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.2. Simulation of Power Electronic Circuits byM. B. Patil , M. C. Chandorkar , V.Ramanarayanan , V.T. Ranganathan.CO-PO MappingPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPO <td col<="" td=""><td>TASK-7 S</td><td>ingle F</td><td>Phase I</td><td>Dual C</td><td>onverte</td><td>er with</td><td>n RL L</td><td>oads</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>TASK-7 S</td> <td>ingle F</td> <td>Phase I</td> <td>Dual C</td> <td>onverte</td> <td>er with</td> <td>n RL L</td> <td>oads</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	TASK-7 S	ingle F	Phase I	Dual C	onverte	er with	n RL L	oads							
NI Multisim Simulation Experiments:         TASK-9 Simulation of Single Phase Half Controlled Converter         TASK-10 Simulation of Single Phase Fully Controlled Converter         TASK-11 Simulation of PWM Inverter         TASK-12 Simulation of Single Phase AC Voltage Controller         Course Outcomes:         At the end of the course, students will be able to         1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.         2. To Perform Laboratory Experiments practically.         3. To carry out laboratory experiments on simulation & Kits.         Text Books         1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.         2. Simulation of Power Electronic Circuits by M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.         PO P	TASK- 8 Illumination control / Fan control using TRIAC															
NI Multisim Simulation Experiments:         TASK- 9 Simulation of Single Phase Half Controlled Converter         TASK- 10 Simulation of Single Phase Fully Controlled Converter         TASK- 11 Simulation of PWM Inverter         TASK- 12 Simulation of Single Phase AC Voltage Controller         Course Outcomes:         At the end of the course, students will be able to         1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.         2. To Perform Laboratory Experiments practically.         3. To carry out laboratory experiments on simulation & Kits.         Text Books         1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.         2. Simulation of Power Electronic Circuits by       M. B. Patil, M. C. Chandorkar, V.         Ramanarayanan , V.T. Ranganathan.         PO P																
TASK- 9 Simulation of Single Phase Half Controlled ConverterTASK- 10 Simulation of Single Phase Fully Controlled ConverterTASK- 11 Simulation of PWM InverterTASK- 11 Simulation of Single Phase AC Voltage ControllerCourse Outcomes:At the end of the course, students will be able to1. The student will analyze the characteristics of power semiconductor devices & P SpiceSimulation.2. To Perform Laboratory Experiments practically.3. To carry out laboratory experiments on simulation & Kits.Text Books1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.2. Simulation of Power Electronic Circuits by Ramanarayanan , V.T. Ranganathan.POPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPO <td co<="" td=""><td>NI Multisii</td><td>n Sim</td><td>ulatio</td><td>n Expe</td><td>erimen</td><td>ts:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>NI Multisii</td> <td>n Sim</td> <td>ulatio</td> <td>n Expe</td> <td>erimen</td> <td>ts:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NI Multisii	n Sim	ulatio	n Expe	erimen	ts:									
TASK- 10 Simulation of Single Phase Fully Controlled ConverterTASK- 11 Simulation of PWM InverterTASK- 12 Simulation of Single Phase AC Voltage ControllerCourse Outcomes:At the end of the course, students will be able to1. The student will analyze the characteristics of power semiconductor devices & P SpiceSimulation.2. To Perform Laboratory Experiments practically.3. To carry out laboratory experiments on simulation & Kits.Text Books1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.2. Simulation of Power Electronic Circuits by M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.CO-PO MappingPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPO<td colspan="</td> <td>TASK-9 S</td> <td>imulat</td> <td>ion of</td> <td>Single</td> <td>Phase</td> <td>Half C</td> <td>Control</td> <td>led Co</td> <td>nverte</td> <td>r</td> <td></td> <td></td> <td></td> <td></td> <td></td>	TASK-9 S	imulat	ion of	Single	Phase	Half C	Control	led Co	nverte	r						
TASK- 11 Simulation of PWM Inverter TASK- 12 Simulation of Single Phase AC Voltage ControllerCourse Outcomes: At the end of the course, students will be able to 1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation. 2. To Perform Laboratory Experiments practically. 3. To carry out laboratory experiments on simulation & Kits.Text Books1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003. 2. Simulation of Power Electronic Circuits by M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.CO-PO MappingCO-PO MappingCOPO PO PO PO POPO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO PO <b< td=""><td>TASK-10</td><td>Simula</td><td>ation o</td><td>f Singl</td><td>e Phas</td><td>e Fully</td><td>y Contr</td><td>colled (</td><td>Convei</td><td>ter</td><td></td><td></td><td></td><td></td><td></td></b<>	TASK-10	Simula	ation o	f Singl	e Phas	e Fully	y Contr	colled (	Convei	ter						
TASK- 12 Simulation of Single Phase AC Voltage Controller         Course Outcomes:         At the end of the course, students will be able to         1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.         2. To Perform Laboratory Experiments practically.         3. To carry out laboratory experiments on simulation & Kits.         Text Books         1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.         2. Simulation of Power Electronic Circuits by         M. B. Patil , M. C. Chandorkar , V.         Ramanarayanan , V.T. Ranganathan.         PO       PO <td>TASK-11</td> <td>Simula</td> <td>ation o</td> <td>f PWN</td> <td>I Inver</td> <td>ter</td> <td></td> <td>~</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	TASK-11	Simula	ation o	f PWN	I Inver	ter		~								
Course Outcomes:         At the end of the course, students will be able to         1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.         2. To Perform Laboratory Experiments practically.         3. To carry out laboratory experiments on simulation & Kits.         Text Books         1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.         2. Simulation of Power Electronic Circuits by M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.         PO P	TASK-12	Simula	ation o	f Singl	e Phas	e AC '	Voltage	e Cont	roller							
At the end of the course, students will be able to 1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation. 2. To Perform Laboratory Experiments practically. 3. To carry out laboratory experiments on simulation & Kits.           Text Books           1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003. 2. Simulation of Power Electronic Circuits by	Course Ou	tcome	es:													
1. The student will analyze the characteristics of power semiconductor devices & P Spice Simulation.         2. To Perform Laboratory Experiments practically.         3. To carry out laboratory experiments on simulation & Kits.         Text Books         1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.         2. Simulation of Power Electronic Circuits by       M. B. Patil , M. C. Chandorkar , V.         Ramanarayanan , V.T. Ranganathan.         PO P	At the end	of the	cours	e, stud	ents w	vill be	able to	)								
Simulation. 2. To Perform Laboratory Experiments practically. 3. To carry out laboratory experiments on simulation & Kits. Text Books 1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003. 2. Simulation of Power Electronic Circuits by M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan. CO-PO Mapping CO PO PO PO PO PO PO PO PO PO P	1. The stu	dent w	vill an	alyze t	the cha	aracte	ristics	of po	wer se	emicor	iducto	or devi	ces &	P Spice		
<ul> <li>2. To Perform Laboratory Experiments practically.</li> <li>3. To carry out laboratory experiments on simulation &amp; Kits.</li> <li>Text Books         <ol> <li>Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.</li> <li>Simulation of Power Electronic Circuits by M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.</li> </ol> </li> <li>CO-PO Mapping         <ol> <li>Y.T. Ranganathan.</li> </ol> </li> <li>Y.T. Ranganathan.</li> </ul>	Simulation	mma I al	anata			ato as	e ati aa	11								
Since any out faboratory experiments on sinulation & Rits.         Text Books         1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.         2. Simulation of Power Electronic Circuits by       M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.         CO-PO Mapping         CO-PO Mopping         CO-PO PO PSO1 PSO         1       2       3       4       5       6       7       8       9       10       11       12       2         CO1       3       2       2       2       3       2       2       3       2         CO2       2       3       3       2       3       2       3       2         A PO	2. 10 Perio	rm Lai	borato	ory Exp	orime	ents pr	actica	IIY. Intion	Q. Vite							
I ext Books         1. Muhammad H. Rashid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.         2. Simulation of Power Electronic Circuits by M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.         CO-PO Mapping         CO-PO Mapping         PO       <		outid	JUIAL	ny exp	Jermit		1 511110	1411011	& KIIS	•						
1. Munammad H. Rasnid, Introduction to PSPICE using OrCAD for Circuits and Electronics, Pearson Education, 3rd Edition, 2003.         2. Simulation of Power Electronic Circuits by       M. B. Patil , M. C. Chandorkar , V. Ramanarayanan , V.T. Ranganathan.         CO-PO Mapping         CO       PO	Text Book	S	D1	:d T		Hart	יתסת	се	n a 0-1	יאה ב	n C:					
Pearson Education, Std Educini, 2003.         2. Simulation of Power Electronic Circuits by Ramanarayanan , V.T. Ranganathan.         PO P	I. Munami	maa H	. Kasn	lla, Int I Editi	roauc	tion to	) P2PI	LE USI	ng Ort	LAD IO	r Circ	uits ar	ia Eleo	ctronics,	,	
2. Simulation of Fower Electronic Circuits by M. B. Fath, M. C. Chandor Kar, V.         Ramanarayanan , V.T. Ranganathan.         CO-PO Mapping         CO       PO       PO<	2 Simulati	incaric	л, этс Ромо	r Eloc	011, 200 stroni	us. Circi	uite h	w M	R Do	+il M	C $C$	anda	rlzar	V		
Name of the second system of	2. Simulation of Power Electronic Circuits by M. B. Patil , M. C. Chandorkar , V.															
CO-PO Mapping         PO       PO <th colspan<="" td=""><td colspan="11">Kamanarayanan , V.T. Kanganathan.</td></th>	<td colspan="11">Kamanarayanan , V.T. Kanganathan.</td>	Kamanarayanan , V.T. Kanganathan.														
CO         PO         PO<	CO-PO Mapping															
PO         PO<	CO PO PSO															
1       2       3       4       5       6       7       8       9       10       11       12       2         CO1       3       2       -       2       -       -       2       2       -       3       2         CO2       2       3       -       2       -       -       2       2       -       3       2         CO3       3       3       -       2       -       -       2       2       -       3       2		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO1	PSO	
CO1     3     2     2     2     3     2       CO2     2     3     2     2     3     2       CO3     3     3     2     2     2     3     2		1	2	3	4	5	6	7	8	9	10	11	12		2	
CO2         Z         S         Z         Z         Z         S         Z           CO3         3         3         2         2         2         3         2           11 Jour 2 Medium 2 Medium 2 Medium 2 Medium 2 Medium 2 Medium 2         2         3         2	CO1	3	2			2				2	2			3	2	
	CO2	∠ ૨	<u>১</u>			2				2	2	<u> </u>		3 2	2	
L: LOW. 2-IVIEQIUM. 3- HIGN		2 3 3 2 2 3 2 3 2 1.1 Low 2-Medium 3- High														



#### Credits Scheme of Examination Max. Category **Contact Periods per week** Marks **Course Title Course Code** Int. Ext. Total Т Р L Total Marks Marks Marks Advanced Power PC 3 0 0 3 21EE2011 3 40 60 100 System Analysis Electrical Measurements 21EE2012 PC 2 0 0 2 60 100 2 40 and Instrumentation Switch Gear and PC 21EE2013 3 0 0 3 3 40 60 100 Protection 3 0 0 3 3 OE **Open Elective III** 40 60 100 Professional PE 3 0 3 21EE4006-10 0 3 40 60 100 Elective II 21EE40011-Professional PE 3 0 0 3 3 40 60 100 15 elective III Electrical **Measurements** 21EE2507 PC and 0 0 2 2 1 40 60 100 Instrumentation Lab 21EE2508 Power Systems PC 0 0 3 3 1.5 40 60 100 Lab Career 21CD6004 SC 0 0 2 2 1 40 60 100 competency Development IV Industry Oriented 0 0 0 0 1 100 100 SC 21IC6002 Course II Counseling/Ment 0 0 1 1 0 --___ ___ oring Sports/Hobby 0 0 2 0 2 ___ ___ ___ Clubs/Activities **Activity Point** During the Semester 20 Points Programme 0 10 Total 17 27 21.5 460 540 1000

#### SEMESTER VI





	NARAYANA ENGINEERING COLLEGE:GUDUR											
21EE2011		AD	VANCED P	OWER SYS	TEM ANALY	'SIS		R2021				
III-B.Tech	Н	ours / Wee	ek	Total	Credit		Max Mar	ks				
	L	Т	Р	hrs	С	CIE	CIE SEE TOTAL					
II-Semester	3	0	0	48	3	40	60	100				
Pre-requisite: Nil												
Course Objectives:												
1.	. Discuss the power system network matrices, formation of $Y_{Bus}$ and $Z_{Bus}$											
2.	Calculation of power flow in a power system network using various techniques											
3.	Discuss the Short Circuit Analysis											
4.	Examine t	he Power s	ystem stab	ility								
Course Out	comes: Af	ter success	ful compl	etion of th	e course, tl	ne student	will be abl	e to:				
CO 1	Discuss th	ne Represe	entation of	power sys	tem matric	es with fo	rmation of	Y _{BUS} .				
CO 2	Describe	the Repres	sentation o	of power sy	vstem matr	ices with f	ormation o	of Z _{BUS} .				
CO 3	Apply the	concepts of	of algorithm	n for the giv	ven power s	ystem netw	vork.					
CO 4	Analyse the symmetrical faults and unsymmetrical faults of a power system network.											
CO 5	Develop	the steady S	State, Dyna	mic and Tr	ansient Stab	oilities for a	a power sys	tem.				

	CO-PO Mapping													
со		PO PSO												
	PO	PO P												
	1 2 3 4 5 6 7 8 9 10 11 12 1 2													
CO1	3	3	3	3	3								3	3
CO2	3	3	3	3	3								3	3
CO3	3	3	3	3	3								3	2
CO4	3	3	3	3	3								3	2
CO5	CO5         3         3         3         3         3         2													
1: Low. 2-Medium. 3- High														

#### COURSE CONTENT MODULE – 1

### P.U SYSTEM AND Ybus FORMATION

Per-Unit representation of Power system elements - Per-Unit equivalent reactance network of a three phase Power System - Graph Theory: Definitions, Bus Incidence Matrix, YBus formation by Direct and Singular Transformation Methods, Numerical Problems.

#### MODULE -2

**Formation of ZBus**: Partial network, Algorithm for the Modification of ZBus Matrix for addition element for the following cases: Addition of element from a new bus to reference, Addition of element from a new bus to an old bus, Addition of element between an old bus to reference and Addition of element between two old busses, Numerical Problems .

### MODULE-3

### POWER FLOW ANALYSIS

Static load flow equations – Load flow solutions using Gauss Seidel Method: Algorithm and Flowchart. Acceleration Factor, Load flow Solution for Simple Power Systems (Max. 3-Buses): Newton Raphson Method in Polar Co-Ordinates Form: Load Flow Solution- Jacobian Elements, Algorithm and Flowchart. Decoupled and Fast Decoupled Methods.- Comparison of Different Methods

### **MODULE-4**



### SHORT CIRCUIT ANALYSIS

Short Circuit Current and MVA Calculations, Fault levels, Application of Series Reactors. Symmetrical Component Theory: Positive, Negative and Zero sequence components, Positive, Negative and Zero sequence Networks. Symmetrical Fault Analysis: LLLG faults with and without fault impedance, Unsymmetrical Fault Analysis: LG, LL and LLG faults with and without fault impedance, Numerical Problems.

### MODULE-5

### STABILITY ANALYSIS

Elementary concepts of Steady State, Dynamic and Transient Stabilities. Derivation of Swing Equation, Power Angle Curve and Determination of Steady State Stability. Determination of Transient Stability by Equal Area Criterion, Application of Equal Area Criterion, Critical Clearing Angle Calculation. Numerical methods for solution of swing equation - Methods to improve Stability.

Total hours: 48 hours

Term work:

Field work of load flow in power system

#### Content beyond syllabus:

1. knowledge of Multi machine stability in power system.

#### Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Representation of	CO1	http://175.101.102.82/moodle/mod/folder/view.php?id=1 7046
	power System		
	Network Matrices		
2	Load Flow Studies	CO2	http://175.101.102.82/moodle/mod/folder/view.php?id=1 7046
3	Newton Raphson	CO3	http://175.101.102.82/moodle/mod/folder/view.php?id=1
	Method		<u>7046</u>
4	Short Circuit	CO4	http://175.101.102.82/moodle/mod/folder/view.php?id=1
	current and MVA		<u>7046</u>
	Calculations		
5	Power system	CO5	http://175.101.102.82/moodle/mod/folder/view.php?id=1
	Stabilities		<u>7046</u>

#### Text Book(s):

1. Elements of power systems analysis by W D Stevenson Jr Fourth Edition TMH International students edition

2. Modern power system analysis by D.P.Kothari and I.J.Nagrath, TMH 3rd Edition

3. Electrical power systems by C.L. Wadhwa, New age International (P) Limited

### **Reference Book(s):**

- 1. Power System Stability by Kimbark vol I willey Publications, Inc
- 2. Power system Stability and control by P. Kundur, TMH
- 3. A.R. Bergen and V.vittal; "Power system Analysis", Pearsib Publication



Online Resources: http://175.101.102.82/moodle/course/view.php?id=693 1.http://www.acadmix.com/eBooks_Download

2. https://nptel.ac.in/courses/108105067/ 3.https://nptel.ac.in/course.html

Web Resources: http://175.101.102.82/moodle/course/view.php?id=693

1. https://lecturenotes.in/subject/482/power-system-analysis-psa/note

2.https://www.youtube.com/watch?v=j44kQiphUB4&list=PL1XaeVNXKsvwkfUAGQiUuqWBsw J4VM3Ed 3.https://www.youtube.com/watch?v=-

bX0k5Dlwek&list=PLgzsL8klq6DJv0G1l7ji4OI8BTXgEADfP

4.https://www.youtube.com/watch?v=tb3gCr9m0LU&list=PLtcRcIUOKppXWUMEVXGwwUL XgzEBygOK- 5.https://www.youtube.com/watch?v=fBm1dr_gRBk&list=PL36A60B630E8C7B56 6.

https://www.youtube.com/watch?v=NfnrupJ0BwY&list=PLfDaOYdi9aZyO2oYhr7G9DYMhoF mqS4A1



NARAYANA ENGINEERING COLLEGE:GUDUR													
21EE2012         ELECTRICAL MEASUREMENTS AND INSTRUMENTATION         R2021													
III-B.Tech		Hours / Week Total Credit Max Marks											
	L	TOTAL											
II-Semester	2	2 0 0 32 2 40 60 100											

Pre-requis	ite: Nil									
Course Ob	Course Objectives:									
<b>1.</b> The	1. The basic principles of different types of electrical instruments for the Measurement of									
voltage, cur	rent, power factor, power and energy.									
<b>2.</b> The	e measurement of R, L, and C parameters using bridge circuits.									
3.The	e principles of magnetic measurements.									
4.The	use of Current Transformers, Potential Transformers, andPotentiometers.									
Course Out	tcomes: After successful completion of the course, the student will be able to:									
CO 1	Describe the concepts and principles of Measuring Instruments to measure voltage and									
	current.									
CO 2	Analyze the working principles of single and three phase wattmeters & energy meter to									
	measure power and energy in circuits.									
CO 3	Demonstrate the concepts and principles of AC and DC bridges to evaluate resistance,									
	inductance and Capacitance for AC and DC Circuits.									
CO 4	<b>Demonstrate</b> the operating principles of instrument transformers and potentiometer to									
	measure unknown voltage, Current & Resistance in circuits.									
CO 5	Identify the physical variables to describe operating principle of the transducers.									

	CO-PO Mapping													
СО		PO PSO												
	РО	PO P												
	1 2 3 4 5 6 7 8 9 10 11 12 1 2													
CO1	3	3	2										3	2
CO2	3	3	2										3	2
CO3	3	3	2										3	2
CO4	CO4 3 3 2 3 2 3 2													2
CO5         3         3         2         Image: Constraint of the second se														
1: Low, 2-Medium, 3- High														

#### **COURSE CONTENT**

### MODULE – 1

#### Measurement of voltage & current

General principles of measurements –essentials of indicating instruments - deflecting, damping, controlling torques-Ammeters and voltmeters - moving coil, moving iron, constructional details, operation, Expression for deflecting & controlling torques and errors compensations- principles shunts and multipliers – extension of range.

#### **MODULE -2**

### Measurement of Power, Energy, Power factor

**Power meters** :Dynamometer type wattmeter –1-phase and 3-phase - LPF and UPF- wattmeter's. **Energy meters** : Single Phase Induction Type Energy Meter – Driving and Braking Torques – Errors andCompensations. Three Phase Energy Meter.

**P.F. Meters** : Dynamometer and Moving Iron Type – 1-ph and 3-ph Meters.

**MODULE-3** 



#### Measurement of Resistance, Inductance and Capacitance

**Measurement of Resistance**: Kelvin's double bridge -Whetstone's bridge, sensitivity, limitations- loss of charge method -Megger method.

**Measurement of Inductance and Capacitance**: Maxwell's inductance and capacitance bridge-Hay's bridge-Anderson's bridge- Desauty's bridge -Schering bridge-weins bridge- Problems

**MODULE-4** 

#### Extension of Instrument Ranges

**Instrument transformers**: Current Transformers and Potential Transformers – Ratio and Phase Angle Errors – Methods for Reduction of Errors.

**Potentiometers:** Principle and Operation of D.C. Crompton"s Potentiometer – Standardization – Measurement of unknown Resistance, Current, Voltage -AC Potentiometers: Polar and Coordinate types-Standardization – Applications.

**MODULE-5** 

#### TRANSDUCERS

Definition and classification - common transducers for measurement of displacement, velocity, flow, liquid level, force, pressure, strain and temperature -LVDT, piezoelectric force transducer, load cell, RTD, Thermistors, thermocouple,

Need for instrumentation system, data acquisition system.

Total hours: 32 hours

#### Term work:

Term work shall consist of report on substation where various measuring instruments can be observed , , seminars and practical session based on syllabus.

# Content beyond syllabus:

**1.** Miscellaneous Measuring Instruments: Maximum demand indicators

#### Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	PMMC	CO1	https://www.tutorialspoint.com/electronic_measuring_instr
	INSTRUMENT		uments/electronic_measuring_instruments_dc_voltmeters.h
			<u>tm</u>
2	ENERGY METER	CO2	https://circuitglobe.com/energy-meter.html
3	DC & AC BRIDGES	CO3	https://www.tutorialspoint.com/electronic_measuring_instr
			uments/electronic_measuring_instruments_dc_bridges.htm
4	POTENTIOMETER	CO4	https://www.youtube.com/watch?v=i05A2sfO7Xc&list=PL22
			7ZNwByTITGq1atJsFst_qnEptI870O&index=33
5	TRANSDUCERS	CO5	https://www.tutorialspoint.com/electronic_measuring_instr
			uments/electronic_measuring_instruments_transducers.ht
			<u>m</u>

### Text Book(s):

1. Electrical & Electronic Measurements and Instrumentation by AK Sawhney, Dhanpat Rai & Sons Digital Instrumentation, A.J. Bouwens, Tata Mc-Graw hill.

2. J. B. Gupta - A course in Electronic and Electrical measurements and Instrumentation, S. K. Kataria Publication

3.Electrical Measurements & Measuring Instruments by M.L.Anand (Author)



#### Reference Book(s):

- 1. E. W. Golding Electrical & Electronic Measurements & Instrumentation
- 2. A. D. Helfrick and W.D. Cooper- Modern Electronic Instrumentation and Meas. Techniques

#### Online Resources:

1. <u>https://b-ok.asia/book/2563619/2f98e0</u>

**2**.https://civildatas.com/download/electronic-and-electrical-measuring-instruments-machines-by-bakshi

3. https://books.google.co.in/books?id=Q6uBCgAAQBAJ&pg=PA9&lpg=PA9&dq=measurements+for+tod ay&source=bl&ots=oXNqMKSLxk&sig=ACfU3U2cEvMiC6pSV205CRFO3WM8vC1HMQ&hl=en&sa=X&ved =2ahUKEwjNq6Lsx4_qAhXlQ3wKHaM4DZ0Q6AEwD3oECAgQAQ#v=onepage&q=measurements%20for%

# 20today&f=false

Web Resources:

1. <u>https://nptel.ac.in/courses/108/105/108105153/</u>

2. <u>http://www.instrumentationtoday.com/</u>

3.<u>https://www.youtube.com/watch?v=n1MinLtvnPY&list=PL227ZNwByTlTGq1atJsFst_qnEptl870O&inde</u> x=2



NARAYANA ENGINEERING COLLEGE:GUDUR												
21EE2013SWITCH GEAR & PROTECTIONR2021												
III-B.Tech	Hours / Week Total Credit Max Marks											
	L	TOTAL										
II-Semester	3 0 0 48 3 40 60 100											

Pre-requisi	Pre-requisite: Nil								
Course Obj	Course Objectives:								
1.	To Learn in detail about Switch gear Protective equipments								
2.	To Learn about the technical aspects involved in the operation of Circuit Breakers								
3.	To Learn about Basic Requirements of Protective Relays								
4.	To Learn different types Relays & Applications								
Course Outcomes: After successful completion of the course, the student will be able to:									
CO 1	Demonstrate the operation of different types of Circuit Breakers								
CO 2	Describe the operation & application of various types of protective relays.								
CO 3	Compare the different types of comparators.								
CO 4	Analyze the various protection schemes of various power system components like								
	alternators, transformers and bus-bars.								
CO 5	Illustrate the various methods of over voltage protection in power systems								

	CO-PO Mapping													
СО		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2											3	2
CO2	3	2											3	2
CO3	3	2											3	2
CO4	3	2											3	2
CO5	3	2											3	2
	1: Low, 2-Medium, 3- High													

### COURSE CONTENT MODULE – 1

**CIRCUIT BREAKERS:** Circuit Breakers: Arc Phenomenon, Methods of Arc Interruption, Restriking and Recovery Voltage - Restriking Phenomenon, RRRV, Current Chopping and Resistance Switching. Constructional features & Principle operation of Minimum Oil Circuit Breakers, Air Blast Circuit Breakers, Vacuum and SF6 Circuit Breakers, Ratings of CB's, Auto Reclosure's.

### MODULE-2

**PROTECTIVE RELAYS:** Basic Requirements of Protective Relays-Primary and Backup Protection

CLASSIFICATION OF RELAYS-I: Types of Electromagnetic Relays, Over current Relays, Directional & Non Directional Relays

### MODULE-3

CLASSIFICATION OF RELAYS-II: Differential Relays, Distance Relays, Static Relays-Advantages & Disadvantages, Microprocessor Based Relays-Advantages & Disadvantages, Universal Relay Torque equation.

**COMPARATORS:** Amplitude and Phase Comparators

**MODULE-4** 



**GENERATOR PROTECTION:** Protection of Generators against Stator Faults, Rotor Faults and Abnormal Conditions, Numerical Problems on percentage winding unprotected.

**TRANSFORMER PROTECTION:** Differential Protection, Buccholz Relay Protection, Numerical Problems on Design of CT Ratio.

**FEEDER PROTECTION:** Protection of Feeder (Radial & Ring Main) Using Over Current Relays, Protection of Transmission Line – Three Zone Protection Using Distance Relays.

### **MODULE-5**

NEUTRAL GROUNDING: Advantages, Types of Neutral Grounding

OVER VOLTAGE PROTECTION: Causes of Over Voltages in Power Systems.-Phenomenon of

Lightning, Protection against Lightning Over Voltages, Lightning Arresters –Rod Gap, Horn Gap, Valve Type and Zinc-Oxide Lighting Arresters.

Total hours: 48 hours

#### Text Book(s):

- 1. Power System Protection and Switchgear, Badri Ram, D.N Viswakarma, TMH Publications, 2011.
- 2. Switchgear and Protection, Sunil S Rao, Khanna Publishers, 1992.

#### **Reference Book(s):**

- 1. Electrical Power Systems, C.L.Wadhwa, New Age international (P) Limited, Publishers, 2012.
- 2. Transmission network Protection, Y.G. Paithankar, Taylor and Francis, 2009.
- **3**. Power system protection and switch gear, Bhuvanesh Oza, TMH, 2010
- 4. Principles of power systems by V.K.Mehta,Rohith Mehta S.Chand(P), 4th Edition

#### Term work:

Field work to EHV Substation / Tutorials/ Quiz's

#### Content beyond syllabus:

- **1.** Carrier current protection
- 2. Insulation Coordination, Basic Impulse Insulation Level

#### Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Circuit Breakers	CO1	https://www.electrical4u.com/electrical-circuit-breaker- operation-and-types-of-circuit-breaker/
2	Protective relays	CO2	https://circuitglobe.com/types-of-circuit-breaker.html
3	Electromagnetic Relays	CO3	https://www.electrical4u.com/electromagnetic-relay- working-types-of-electromagnetic-relays/
4	Generator protection	CO4	https://circuitglobe.com/differential-protection-relay.html https://circuitglobe.com/impedance-type-distance- relay.html https://www.engineeringenotes.com/electrical- engineering/comparators/amplitude-comparators-and-its- types-devices-electrical-engineering/32806



5	Neutral grounding	CO5	https://circuitglobe.com/differential-protection-of-a-
			generator.html
			https://circuitglobe.com/differential-protection-of-a-
			transformer.html
			https://circuitglobe.com/feeder-
			protection.html#:~:text=Feeder%20Protection,the%20vari
			ous%20type%20of%20fault.

### Online Resources:

1. <u>http://175.101.102.82/moodle/course/view.php?id=691</u>

2.https://subjects.ee.unsw.edu.au/elec9712/ELEC9712%20-%20Lec8%20-

%20Circuit%20breakers%20Notes.pdf

- 3. https://b-ok.asia/book/5482781/8e4867
- 4. https://b-ok.asia/book/5482780/4ec690

#### Web Resources:

1.<u>https://nptel.ac.in/courses/108/101/108101039/</u>

2. <u>https://www.youtube.com/watch?v=GSh0f94JwaA&t=54s</u>

3. <u>https://www.youtube.com/watch?v=dPInm2zoirA&t=40s</u>

4. <u>https://www.youtube.com/watch?v=OH7-NJRdDyA</u>

5. <u>https://www.youtube.com/watch?v=Kd_73FnTueI</u>

6. https://www.youtube.com/watch?v=OElOqRSN0FE

7. <u>https://www.youtube.com/watch?v=Y5dAaeLPzzk</u>

8. <u>https://www.youtube.com/watch?v=ODj4sWxKm9o</u>



NARAYANA ENGINEERING COLLEGE:GUDUR											
21EE2507	EE2507 ELECTRICAL MEASUREMENT & INSTRUMENTATION LAB R2021										
III-B.Tech	Hours / Week			Total	Credit	Max Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II-Semester	0	0	2	30	1	40	60	100			

# Pre-requisite: Nil

### Course Objectives:

- 1. Measurement of coefficient of coupling between two coupled coils.
- 2. Accurate determination of inductance and capacitance using D.C and A.C Bridges
- 3. Calibration of various electrical measuring instruments.

<b>Course Outcomes</b> : After successful completion of the course, the student will be able to:								
CO 1	Accurately determine the values of inductance and capacitance using a a.c bridges							
CO 2	Compute the coefficient of coupling between two coupled coils							
CO 3	Calibrate various electrical measuring instruments							
CO 4	Accurately determine the values of very low resistances							

	CO-PO Mapping													
СО		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1	2	1					2	2				1
CO2	2	2	2	1				1	2	2				2
CO3	2	2	1	1				1	2	2				1
CO4	2	2	2	1	1			1	2	2				2
	1: Low, 2-Medium, 3- High													

#### **COURSE CONTENT**

#### List of Experiments

TASK-1 Calibration and Testing of Single phase energy meter

TASK- 2 Calibration of dynamometer wattmeter using phantom loading Test

TASK- 3 Calibration of dynamometer power factor meter

TASK- 4 Measurement of 3 -phase reactive power with single -phase wattmeter for balanced loading

TASK- 5 Measurement of parameters of a choke coil using 3-Voltmeter and 3-Ammeter methods

TASK- 6 Crompton D.C Potentiometer - Calibration of PMMC Ammeter and PMMC Voltmeter

TASK- 7 Kelvin's Double Bridge - Measurement of low resistance - Determination of Tolerance

TASK- 8 Capacitance Measurement using Schering Bridge

TASK- 9 Inductance Measurement using Anderson Bridge.

TASK- 10 LVDT and capacitance pickup - characteristics and calibration

### Additional Experiments:

TASK-11Measurement of 3-phase power by using Two Wattmeter method

TASK-12 Resistance strain gauge- Strain measurement and calibration



	Total hours:	36 hours
Term work:		11
Calibrate the Electrical & Electronics Instruments		
Content beyond syllabus:		
1. Measurement of 3-phase power with single wattmeter and 2 No's CT		
Online Resources:		
1. <u>http://www.acadmix.com/eBooks_Download</u>		
Web Resources:		
1. <a href="http://sreevahini.edu.in/pdf/electrical-measurements-lab.pdf">http://sreevahini.edu.in/pdf/electrical-measurements-lab.pdf</a>		
2. http://www.eee.griet.ac.in/wp-content/uploads/2014/12/EMI-Lab-Manu	<u>ıal.pdf</u>	



	NARAYANA ENGINEERING COLLEGE: GUDUR											
21EE2508		POWER SYSTEM LAB R2021										
III-B.Tech		Hours /	Week	Total	Credit		x Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
II-Semester	0	0	3	30	1.5	40	60	100				

**Pre-requisite:**Must have the basic knowledge in Generation, Transmission & Distribution **Course Objectives:** 

- 1. To study the different methods of power system analysis.
- 2. To learn about the power system control.
- 3. To learn about the concepts of Power system stability.

<b>Course Outcomes</b> : After successful completion of the course, the student will be able to:								
CO 1	Examine the power system analysis ( <b>BL=4</b> )							
CO 2	Identify characteristics of various Relays(BL=3)							
CO 3	Understand various tests on Motors and Transformers (BL=2)							

	CO-PO Mapping													
СО		PO PSO												
	PO	O PO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	1	1				2	2		1	2	3
CO2	2	2	1	1	1				2	2		1	2	3
CO3	2	2	1	1	1				2	2		1	1	3
				1	l: Low	v, 2-M	ediun	1, 3- H	ligh					

COURSE	CONTENT
--------	---------

- Task 1 Determination of Sub transient Reactance of Salient Pole Synchronous Machine.
- Task -2 Determination of Sequence Impedances of Cylindrical Rotor Synchronous Machine.
- Task -3 LG -Fault Analysis.
- TASK -4 LLG -Fault Analysis.
- **TASK -5** Equivalent Circuit of a Three Winding Transformer.
- **TASK-6** Separation of No-Load Losses of Three-Phase Squirrel Cage Induction Motor.
- Task -7 LL -Fault Analysis.
- TASK -8 LLLG -Fault Analysis.
- **TASK -9** Characteristics of IDMT Over Current Relay -Electromagnetic Type.
- **TASK -10 -** Characteristics of Over Voltage Relay -Electromagnetic Type.
- **TASK -11 -** Characteristics of Over Voltage Relay- Microprocessor Type.
- **TASK -12** Characteristics of Percentage Biased Differential Relay-ElectromagneticType.

#### Additional Experiments:

**TASK -13** – Performance of Digital Distance Relay.

**TASK -14** - Characteristics of Percentage Biased Differential Relay- Static Type.



### Virtual Labs:

- 1. http://www.ee.iitkgp.ac.in/faci_ps.php
- 2. <u>https://vp-dei.vlabs.ac.in/Dreamweaver/list.html</u>

### Self-Study:

Contents to promote self-Learning:

SNO	СО	Reference
1	CO 1	https://nptel.ac.in/courses/108/105/108105067/
2	CO 2	https://nptel.ac.in/content/storage2/courses/108101039/download/Le cture-15.pdf
3	CO 3	https://nptel.ac.in/courses/108/105/108105017/

### Text Book(s):

- 1. POWER SYSTEM ANALYSIS by HADI SAADAT Tata McGraw-Hill Education, 01-Aug-2002.
- 2. Power System Protection and Switchgear, Badri Ram, D.N Viswakarma, TMH Publications, 2011.

#### **Reference Book(s):**

- 1. Power Systems Analysis, Grainger and Stevenson, Tata Mc Graw-hill, 2005.
- 2. Modern Power system Analysis 2nd edition, I.J.Nagrath&D.P.Kothari: Tata McGraw-Hill Publishing Company, 2003.
- 3. Kundur, P., "Power System Stability and Control", Mc. Graw Hill inc. 1994.
- 4.Jim Arlow, Ila Neustadt, "UML 2 and the Unified Process: Practical Object-Oriented Analysis and Design", 2nd Edition, Pearson, (2005).

### Web Resources:

1.<u>http://www.academia.edu/Documents/in/Power-System-Analysis-by-Hadi-Saadat-Electrical-Engineering</u>

- 2. <u>https://nptel.ac.in/courses/108/101/108101040/</u>
- 3. https://nptel.ac.in/courses/108/104/108104052/
- 4. https://nptel.ac.in/courses/108/105/108105067/
- 5. <u>https://nptel.ac.in/courses/108/101/108101039/</u>



# SEMESTER VII

Course Code	A 50 50 Course Title		Co	ntact	Perio week	ds per	edits	Scheme of Examination Max. Marks			
Course Coue	Cate		L	Т	Р	Total	Cre	Int. Marks	Ext. Marks	Total Marks	
21EN5001-5	HS	Humanities and Social Science Elective	2	0	0	2	2	40	60	100	
21EE2014	PC	Solid State Electric Drives	3	0	0	3	3	40	60	100	
21EE2015	PC	Power System Operation and Control	3	0	0	3	3	40	60	100	
	OE	Open Elective IV	3	0	0	3	3	40	60	100	
21EE40016-20	PE	Professional elective IV	3	0	0	3	3	40	60	100	
21EE40021-25	PE	Professional elective V	3	0	0	3	3	40	60	100	
21EE2509	PC	Electronic systems design lab	0	0	2	2	1	40	60	100	
21EE2510	PC	Power Systems Simulation Lab	0	0	3	3	1.5	40	60	100	
21CD6005	SC	Career competency Development V	0	0	2	2	1	40	60	100	
21CC6501	SC	Skill development Training	0	0	2	2	1	40	60	100	
21EE7502	PR	Internship II/on job training/Com Ser Project	0	0	0	0	1.5	00	100	100	
21MC8002-13	MC	Mandatory course IV	2	0	0	2	0				
		Counseling/Mentori	0	0	1	1	0				
		Sports/Hobby Clubs/Activities	0	0	2	2	0				
		Activity Point Programme		During the Semest			ter	r 20 Points			
		Total	19	0	12	31	23	400	700	1100	



	NARAYANA ENGINEERING COLLEGE:GUDUR										
21EE2014	21EE2014SOLID STATE ELECTRICAL DRIVESR2021										
IV-B.Tech		Hours /	Week	Total	Credit		Ma	x Marks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
I-Semester	3	0	0	48	3	40	60	100			

# Pre-requisite: Nil

### **Course Objectives:**

1. To understand steady state operation and transient dynamics of a motor load system.

2. To study and analyze the operation of the converter fed dc drive, both qualitatively and quantitatively.

3. To study and analyze the operation of the chopper fed dc drive, both qualitatively and quantitatively.

4. To study and understand the operation and performance of AC Induction motor drives.

5. To study and understand the operation and performance of AC Synchronous motor drives.

Course Ou	Course Outcomes: After successful completion of the course, the student will be able to:							
CO 1	Describe the basic requirements of motor selection for different load profiles.							
CO 2	Analyze the operation of the converter fed dc drive							
CO 3	Demonstrate the operation of the chopper fed dc drive							
CO 4	CO 4 Illustrate the operation and performance of AC Induction motor drives							
CO 5	CO 5 Analyze the induction motor drive using inverter							

	CO-PO Mapping													
СО						P	0						PS	50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	2	2								3	2
CO2	2	2	2	2	2								3	2
CO3	2	2	2	2	2								3	2
CO4	2	2	2	2	2								3	2
CO5	2	2	2	2	2								3	2
				1	l: Lov	v. 2-M	lediun	1. 3- H	ligh					

### COURSE CONTENT MODULE – 1

### Electric Drive

Classification of Electric Drives, Basic elements of Electric Drive, Introduction to Thyristor Controlled Drives, Single Phase Semi and Fully Controlled Converters Connected to D.C Separately Excited motor-Output Voltage and

Current Waveforms – Speed and Torque Expressions -problems.

### MODULE -2

Three Phase Semi and Fully Controlled Converters Connected to D.C Separately Excited and D.C Series Motors – Continuous Current Operation – Output Voltage and Current Waveforms – Speed and Torque Expressions – Speed – Torque Characteristics- Problems. Introduction to Four Quadrant Operation – Motoring Operations, Electric Braking – Plugging, Dynamic and Regenerative Braking Operations. Four Quadrant Operation of D.C Motors by Dual Converters

### **MODULE-3**



#### DC motor drives:

Single Quadrant, Two Quadrant and Four Quadrant Chopper Fed DC Separately Excited and Series Excited Motors – Continuous Current Operation – Output Voltage and Current Wave Forms – Speed Torque Expressions – Speed Torque Characteristics.

#### **MODULE-4**

Induction Motor Stator Voltage Control and Characteristics. AC Voltage Controllers – Waveforms – Speed Torque Characteristics - Stator Frequency Control and Characteristics. Voltage Source and Current Source Inverter - PWM Control – Speed Torque Characteristics.

#### MODULE-5

#### Induction motor drives:

Static Rotor Resistance Control – Slip Power Recovery – V/f control of Induction Motor – Their Performance and Speed Torque Characteristics – Advantages- Applications – Problems.

#### Synchronous motor drives:

Separate Control & Self Control of Synchronous Motors – Operation of Self ControlledSynchronous Motors by VSI and CSI

Total hours: 48 hours

#### Term work:

Tutorials/Quizes

#### **Content beyond syllabus:**

1. Cycloconverter fed synchronous motor drives

### Self-Study:

### **Contents to promote self-Learning:**

~ •	niens to promote sen Leuring.									
	SNO	Торіс	CO	Reference						
	1	Thyristor Controlled	CO1	https://www.youtube.com/watch?v=-EC6q5_grM4						
		Drives								
	2	Four Quadrant	CO2	https://www.youtube.com/watch?v=Tfrv9DJfVgs						
		Operation								
	3	Chopper Fed DC	CO3	https://www.youtube.com/watch?v=pdjVSWSQ83w						
		Motors								
	4	AC Voltage Controller	CO4	https://www.youtube.com/watch?v=Pc7txXwvhBM						
		fed AC drives								
	5	Slip Power Recovery	CO5	https://www.youtube.com/watch?v=9Z0Tn5iTYyE						
		scheme								

#### **Text Book(s):**

- 1. Power semiconductor controlled drives, G K Dubey, Prentice Hall, 1995.
- 2. Modern Power Electronics and AC Drives, B.K.Bose, PHI, 2002.

#### **Reference Book(s):**

- 1. Power Electronics, MD Singh and K B Khanchandani, Tata McGraw-Hill Publishing company, 2008.
- 2. Power Electronic Circuits, Devices and applications, M.H.Rashid, PHI, 2005.
- 3. Electric drives Concepts and Applications, Vedam Subramanyam, Tata McGraw Hill



### **Online Resources:**

- 1. https://doku.pub/documents/electric-drives-by-gk-dubey-59gge6y3vm0n
- 2. https://nptel.ac.in/courses/108/104/108104140/

#### Web Resources:

- 1. <a href="https://www.youtube.com/watch?v=1AT1yuQ9awM&list=PLFW6lRTa1g83sIfVY1p1xGqPGYUmXyahx">https://www.youtube.com/watch?v=1AT1yuQ9awM&list=PLFW6lRTa1g83sIfVY1p1xGqPGYUmXyahx</a>
- 2. <a href="https://www.youtube.com/watch?v=WsDPqDqnpyw&list=PLuv3GM6-gsE3UGP1cSOl1KuEXscGFdKXB">https://www.youtube.com/watch?v=WsDPqDqnpyw&list=PLuv3GM6-gsE3UGP1cSOl1KuEXscGFdKXB</a>

·	NARAYANA ENGINEERING COLLEGE:GUDUR										
21EE2015		POWER SYSTEM OPERATION & CONTROL R2021									
IV-B.Tech		Hours /	Week	Total	Credit		Max Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
I-Semester	3	0	0	48	3	40	60	100			

## Pre-requisite: Nil

### **Course Objectives:**

1. To understand the importance of optimal power flow and power system.

2. To Describe the hydrothermal scheduling, and its constraints.

3. To listen about single area and two area load frequency control, modeling of turbines

4. To understand the Deregulation, Restructuring models.

Course Outcomes: After successful completion of the course, the student will be able to:							
CO 1	Enumerate the Heat rate curves, Economic operations of power systems						
CO 2	Describe the Hydrothermal power stations Scheduling						
CO 3	Discuss the single area load frequency control, modelling of turbines, speed governing						
	systems.						
CO 4	Illustrate two area load frequency control, tie line and economic dispatch control for						
	load frequency control.						
CO 5	Discuss the deregulation and conditions of deregulation in a power systems.						

	CO-PO Mapping													
СО						P	0						PS	50
	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	2		2								3	2
CO2	2	2	2		2								3	2
CO3	2	2	2	2	2								3	2
CO4	2	2	2	2	2								3	2
CO5	CO5         2         2         2         2         3         2													
					1: Lov	w, 2-M	ledium	, 3- Hi	gh					

# COURSE CONTENT

MODULE – 1

### UNIT – ECONOMIC OPERATION OF THERMAL POWER STATION

Over view of power system operation and Control, System Load variation, Formulation of Economic dispatch in Thermal Power station - Heat Rate Curve – Cost Curve –Incremental Fuel and Production Costs. Input-Output Characteristics, Constraints of power systems, Optimum Scheduling of Thermal power station.

### **Optimum Generation Allocation:**

Optimum Generation Allocation with Line Losses Neglected. Loss Coefficients, General line loss formula, Optimum Generation Allocation with Line Losses.

#### **MODULE -2**



### UNIT-II-HYDROTHERMAL SCHEDULING and Governing

Optimal scheduling of Hydrothermal system: Scheduling problems, Optimal Scheduling of Hydrothermal System, short term Hydro thermal Scheduling(4h)

### MODELLING OF TURBINE AND SPEED GOVERNING SYSTEM

Modeling of Turbine: First Order Turbine Model, Approximate Linear models, Modeling of Governor,

Mathematical Modeling of Speed Governing System, Derivation of Small Signal Transfer Function – BlockDiagram (4h)

#### MODULE-3

### LOAD FREQUENCY SINGLE AREA CONTROL

Necessity of Keeping Frequency Constant.–Definition of control Area, – Mathematical modeling of generator,

loads, for LFC & corresponding block diagram representation, Block Diagram Representation of an Isolated PowerSystem – Steady State Analysis – Dynamic Response – Uncontrolled Case. (8h)

**MODULE-4** 

**Load Frequency Control of 2-Area System: Load Frequency control of 2-Area system** and its Block diagram, Uncontrolled case and controlled case. Tie-Line Bias Control. Proportional Plus Integral Control of Single Area and Its Block Diagram Representation, Economic Dispatch Control.

### MODULE-5

### **Deregulation of Power system:**

Deregulation, Need and conditions for deregulation, Basics of public good economics, Components of Deregulation, Technical, economic & Regulatory issues involved in deregulation of power industry, Privatization, Competition in the electricity sector, conditions, barriers, benefits of Challenges, Reregulation.

Total hours: 48 hours

#### Term work:

Field work of power system operation & Deregulation in Thermal power plant

#### **Content beyond syllabus:**

1. Knowledge of Voltage control in Power systems

#### Self-Study:

### Contents to promote self-Learning:

-0	onents to promote sen-izer inig.										
	SN	Торіс	СО	Reference							
	0										
	1	Economic Operation of Thermal power station	CO1	http://175.101.102.82/moodle/mod/folder/view.php?id=13928							
	2	Hydro thermal scheduling	CO2	http://175.101.102.82/moodle/mod/folder/view.php?id=13928							
	3	Load frequency single area control	CO3	http://175.101.102.82/moodle/mod/folder/view.php?id=13928							
	4	Load frequency two area control	CO4	http://175.101.102.82/moodle/mod/folder/view.php?id=13928							
	5	Deregulation of Power system	CO5	http://175.101.102.82/moodle/mod/folder/view.php?id=13928							


- 1. Power Generation Operaton and control Wood and Wollenerg, wiley Publishers
- 2. Power systems operation and Control Chakravarthi, Halder

3. D.P.Kothari and I.J.Nagrath, "Modern Power System Analysis" Tata Mc Graw Hill publishing company Ltd., 2003.

## **Reference Book(s):**

1. S Sivanagaraju and G Sreenivasan, "Power System Operation and Control ", Pearson" MeriPustak-Machwan Communication & Research publishing Company Ltd, 2004

2 Geoffrey Rothwell, Tomas Gomez (Eds), " Electricity Economics Regulation and Deregulation", IEEE Press Power Engineering series , John Wiley & Sons, 2003

Loi Lei Lai, "Power System Restructuring and Deregulation", John Wiley & Sons Ltd, England, 2001
 Mohammad Shahidehpour, Muwaffaq Alomoush, "Restructured Electric power Systems: Operation, Trading and Volatility", Marcel Dekker, Inc., 2001

Online Resources: <u>http://175.101.102.82/moodle/course/view.php?id=610</u> 1.<u>http://www.acadmix.com/eBooks_Download</u>

Web Resources: <u>http://175.101.102.82/moodle/course/view.php?id=610</u>

1.https://lecturenotes.in/notes/14667-note-for-power-system-operation-and-control-psoc-by-jntu-

heroes?reading=true&continue=2

2.<u>https://lecturenotes.in/notes/17488-note-for-power-system-operation-and-control-psoc-by-sucharita-das</u> 3.<u>http://www.crectirupati.com/sites/default/files/lecture_notes/PSO</u>C%20-%20%20IV%20-%21EEE_0.pdf

4.http://www.tutorialspoint.com/



	NARAYANA ENGINEERING COLLEGE:GUDUR										
21EE2510		POWER SYSTEM SIMULATION LAB R2021									
IV-B.Tech		Hours /	Week	Total	Credit	Max Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
I-Semester	0	0	3	30	1.5	40	60	100			

## Pre-requisite: Nil

## **Course Objectives:**

- 1. To study the different methods of power system analysis.
- 2. To learn about the power system control.
- 3. To learn about the concepts Power system stability.

<b>Course Outcomes</b> : After successful completion of the course, the student will be able to:							
CO 1	Examine the power system analysis- (BL-4)						
CO 2	Construct the controllers of a power system. (BL-3)						
CO 3	Analyze the various power system stabilities- (BL-4)						

	CO-PO Mapping													
СО		РО										PSO		
	PO	O PO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	1	2				2	2		1	2	3
CO2	2	2	1	1	2				2	2		1	2	3
CO3	2	2	1	1	2				2	2		1	1	3
				1	l: Lov	v, 2-M	ediun	1, 3- H	ligh					

#### **Course content**

Task -1 Formation of bus admittance matrix (ybus).

Task -2 Power flow analysis using gauss seidal method.

Task -3 Power flow analysis using newton raphson method.

Task -4 Load flow analysis using fast decoupled method.

Task -5 Step response of two area system with and without. Integral control and estimation of frequency deviationusing simulink.

Task-6 Step response of two area system with integral Control and estimation of tie-line power deviation using Simulink.

Task -7Analysis of steady state stability of a single Machine connected to infinite bus using point by point method.

Task -8 Design of P-I-D controller.

Task -9 Design of fuzzy logic air conditioner.

Task -10 Load flow analysis using neural networks.

Task -11 Program for swing curve when the fault is cleared.

Task -12Swing curve for sustained fault and criticalclearing angle & time.

### Additional Experiments:

Task -13 Design of kalman filter

Task - 14 Formation of bus impedance matrix(zbus)

Task - 15Matlab program to find optimum loading ofgenerators neglecting transmission losses

Task -16 Matlab program to find optimum loading of generators with penalty factors Narayana Engineering College :: Gudur (Autonomous)



Self-Study: Contents to promote self-Learning:								
SNO	CO	Reference						
1	CO 1	https://nptel.ac.in/courses/108/105/108105067/						
2	CO 2	1. <u>https://nptel.ac.in/courses/108/101/108101040/</u> 2. <u>https://nptel.ac.in/courses/108/104/108104052/</u>						
3	CO 3	1. https://nptel.ac.in/courses/108/101/108101040/ 2. https://nptel.ac.in/courses/108/104/108104052/						

- 1. POWER SYSTEM ANALYSIS by HADI SAADAT Tata McGraw-Hill Education, 01-Aug-2002.
- 2. MATLAB for Electrical Engineers and Technologists: MATLAB Tutorial with Practical Electrical Examples- Stephen P. Tubbs, 2010

## **Reference Book(s):**

- 1. Power Systems Analysis, Grainger and Stevenson, Tata Mc Graw-hill, 2005.
- 2. Modern Power system Analysis 2nd edition, I.J.Nagrath & D.P.Kothari: Tata McGraw-Hill Publishing Company, 2003.
- 3. Kundur, P., "Power System Stability and Control", Mc. Graw Hill inc. 1994.
- 2. Jim Arlow, Ila Neustadt, "UML 2 and the Unified Process: Practical Object-Oriented
- 3. Analysis and Design", 2nd Edition, Pearson, (2005).

## Web Resources:

1.http://www.academia.edu/Documents/in/Power-System-Analysis-by-Hadi-Saadat-Electrical-Engineering

- 2. <u>https://nptel.ac.in/courses/108/101/108101040/</u>
- 3. https://nptel.ac.in/courses/108/104/108104052/
- 4. https://nptel.ac.in/courses/108/105/108105067/

## SEMESTER VIII

Course Code	egory	Course Title	Contact Periods per week				edits	Scheme of Examination Max. Marks		
	Cat		L	Т	Р	Total	Cr	Int. Marks	Ext. Marks	Total Marks
21EE7503	PR	Project work, seminar and internship	0	0	0	0	12	60	140	200
			0	0	0	0	12	60	140	200



## PROFESSIONAL ELECTIVES (PE)

Elective	Professional	Professional	Professional	Professional	Professional
Track/Group	Elective-1	Elective-2	Elective-3	Elective-4	Elective-5
Advanced Power systems	Industrial Electrical Systems (21EE4001)	Power System Planning (21EE4006)	Reactive Power Compensation and Management (21EE4011)	Power Quality (21EE4016)	Smart Grid Technologies (21EE4021)
Control Systems	System Modeling and Identification (21EE4002)	Advanced Control systems (21EE4007)	Digital Signal Processing (21EE4012)	Multivariable Control System (21EE4017)	Real Time Control System (21EE4022)
Electromechanical Systems	Machine Modeling and Analysis (21EE4003)	Electrical Machine Design (21EE4008)	Programmable Control Devices and Applications (21EE4013)	Hybrid Electrical Vehicles (21EE4018)	Automotive Electrical Engineering (21EE4023)
Energy Systems	Renewable Energy Conversion Systems (21EE4004)	Solar and Fuel Cell Energy Systems (21EE4009)	Wind and Biomass Energy Systems (21EE4014)	Utilization of Electrical Energy (21EE4019)	Energy Audit and Demand side Management (21EE4024)
Power Electronics	Advanced Power Electronics (21EE4005)	Advanced Electrical Drives (21EE4010)	HVDC and FACTS (21EE4015)	Advanced Power Converters (21EE4020)	Advanced Power Semiconductor Devices and Protection (21EE4025)



NARAYANA ENGINEERING COLLEGE:GUDUR										
21EE4001		INDUS	STRIAL F	ELECTRI	CAL SYS	TEMS		R2021		
	Н	lours / Wee	ek	Total	Credit		Max Mar	·ks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requis	ite: Nil									
Course Objectives:										
1. To make students understand the fundamental theory governing the photovoltaic										
devise and make them carry out preliminary system design.										
2. To learn the fundamental knowledge about various fuel cell technologies.										
Course O	utcomes:	After suc	cessful co	ompletion	of the cou	rse, the st	udent will	l be able to:		
CO 1	Understan	d the elect	rical wiring	systems fo	r residentia	l, commerc	ial and indu	ıstrial		
	consumer	s through s	ymbols, dra	awings and	SLD (BL-2	2)				
<b>CO 2</b>	Justify the	e need of in	dustrial ele	ctrical syste	em compon	ents and in	dustrial aut	omation (BL-		
	3)									
<b>CO 3</b>	Analyze t	he size, rat	ing and cos	st of electri	cal installat	ions for res	sidential an	d commercial		
	applicatio	ns (BL-4)								
<b>CO 4</b>	Analyze t	he appropri	ate electric	al system w	ith protecti	ve equipme	ents for ind	ustrial		
	applicatio	ns (BL-4)								
CO 5	Understan	d the role of	of industria	l automatio	n (BL-2)					

	CO-PO Mapping													
СО		PO										PSO		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2										2	1
CO2	3	2											3	2
CO3	3	2	2										2	2
<b>CO4</b>	3	2	2	2									3	3
CO5	2	2			2								2	1
				1	l: Low	v, 2-M	lediun	n. 3- H	ligh					

COURSE CONTENT									
MODULE – 1	Electrical System Components	10 Hours							
LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, Protection components- Fuse, MCB, MCCB, ELCB, Symbols for wiring components, Single line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practices									
At the end of the Mod	ule 1, students will be able to:								
1. Understand t	he different types protecting devices (BL-2)								
2. Discuss the	various performance characteristics of protecting devi	ices.(BL-2)							
MODULE -2	<b>Residential and Commercial Electrical Systems</b>	10 Hours							
Types of residential and	commercial wiring systems, General rules and guidelines	for installation, Load							
calculation and sizing of	wire, Rating of main switch, distribution board and protect	ction devices, Earthing							
system calculations, Rec lamps, Earthing of comr	system calculations, Requirements of commercial installation, Deciding lighting scheme and number of lamps, Earthing of commercial installation, Selection and sizing of components								
At the end of the Module 2, students will be able to:									
1. Discuss the	1. Discuss the different types of wiring systems (BL-3)								
2. Discuss the	e concepts of Earthing system and its calculation (BL	-3)							



MODULE-3	Illumination Systems	09 Hours								
Understanding various consumption, glare, sp schemes, Incandescent illumination systems, I	terms regarding light- lumen, intensity, candle power, lamp ace to height ratio, waste light factor, depreciation factor, V lamps and modern luminaries like CFL, LED and their ope Design of a lighting scheme for a residential and commercia	o efficiency, specific arious illumination ration, Energy saving in l premises, Flood lighting								
At the end of the Module 3, students will be able to:										
1. Predict the	1. Predict the performance of various lighting systems in industry. (BL-4)									
MODULE-4	Industrial Electrical Systems	10 Hours								
<ul> <li>Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction – kVAR</li> <li>calculations, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB and other LT panel components</li> <li>DG Systems, UPS System, Electrical Systems for the elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks</li> <li>At the end of the Module 4, students will be able to: <ol> <li>Analyze the application of various equipments in industrial electrical system. (BL-4)</li> </ol> </li> </ul>										
MODULE-5	Industrial Electrical System Automation	09 Hours								
Study of basic PLC, Ro design, Panel Metering	ble of automation, Advantages of process automation, PLC g and Introduction to SCADA system for distribution automatic	based control system ation								
At the end of the Mo	dule 5, students will be able to:									
1. Understand	the performance of industrial automation for better operatio	n of industry. (BL-2)								
	Tot	tal hours: 48 hours								

## Term work:

1. Field trip

## Content beyond syllabus:

- 1. Introduction of hydrogen energy systems
- 2. Hydrogen production processes
- 3. Hydrogen storage and safety

## Self-Study:

SNO	MODULE	Reference						
1	Electric shock and	https://electrical-engineering-portal.com/21-safety-						
	Electrical safety practices	rules-for-working-with-electrical-equipment						
2	General rules and	https://www.tutorhelpdesk.com/homeworkhelp/Engine						
	guidelines for	ering-/General-Rules-For-Wiring-Assignment-						
	installation	Help.html						
3	Flood lighting	https://www.tutorialspoint.com/what-is-flood-lighting-						
		definition-purpose-calculation-and-applications						
4	Selection of UPS and	https://myelectrical.com/notes/entryid/164/ups-battery-						
	Battery Banks	sizing#:~:text=Example%20of%20UPS%20battery%2						
		0sizing,cells%20of%202%20V%20each).						
5	Introduction to SCADA	https://www.scadalink.com/support/knowledge-base/an-						
	system for distribution	introduction-to-						
	automation	scada/#:~:text=The%20term%20SCADA%20stands%20f						
		or,for%20control%20or%20monitoring%20purposes.						
		÷ 1 1						



#### Text Book(s): 1. S. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publishers, 2008. 2. K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007. 3. S. Singh and R. D. Singh, "Electrical estimating and costing", Dhanpat Rai and Co., 1997. **Reference Book(s):** 1. H. Joshi, "Residential Commercial and Industrial Systems", McGraw Hill Education, 2008 2. 5. IS Standards : https://bis.gov.in **Online Resources:** 1. https://electrical-engineering-portal.com/21-safety-rules-for-working-with-electrical-equipment 2. https://www.tutorhelpdesk.com/homeworkhelp/Engineering-/General-Rules-For-Wiring-Assignment-Help.html 3. https://www.tutorialspoint.com/what-is-flood-lighting-definition-purpose-calculation-andapplications 4.

https://myelectrical.com/notes/entryid/164/ups-battery-

sizing#:~:text=Example%20of%20UPS%20battery%20sizing,cells%20of%202%20V%20each). https://www.scadalink.com/support/knowledge-base/an-introduction-to-5. scada/#:~:text=The%20term%20SCADA%20stands%20for,for%20control%20or%20monitoring%20pur poses.

Web References:

1. https://nptel.ac.in/courses/108107112





NARAYANA ENGINEERING COLLEGE:GUDUR											
21EE4006		Р	OWER SY	YSTEM F	LANNIN	G		R2021			
	H	ours / Wee	ek	Total	Credit		Max Mar	rks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
	3	0	0	48	3	40	60	100			
Pre-requi	isite: Nil										
Course Objectives:											
1.	To make s	tudents u	nderstand	the fundation	mental the	ory govern	ning the p	ower system			
	planning a	nd forecas	sting.								
2.	To make t	he studen	ts to unde	rstand the	economic	s related	to expansi	on of power			
	system.										
3.	To learn th	ne fundam	nental know	wledge ab	out transm	nission and	d distribut	ion planning			
	for future e	expansion									
4.	To make the	ne student	s to unders	stand the r	eliability c	oncept in	power sys	tem to better			
_	operation of	of power s	ystem.								
5.	To make the students to make the planning with respect to electricity market based										
demand.											
Course Outcomes: After successful completion of the course, the student will be able to:											
COT	Discuss p	primary co	mponents	of power s	system plai	ining, plai	ining meti	1000logy for			
	load room	iromonto	stem expan	ision and s	snow know	leuge of f	tic and sta	tistical			
	technique	s using fo	recasting 1	tools (BL.	-1101 gy Uy ( -2)	Jetermins	tic allu sta	usucai			
CO 2	Discuss n	nethods to	mobilize	resources	to meet the	investme	nt require	ment for the			
	power sec	rtor and u	nderstand	economic	appraisal t	o allocate	the resour	ces			
	efficiently	v and app	reciate the	investmer	t decisions	s to power	generation	n and			
	planning	for system	n energy ir	the count	rv (BL-2)		8				
	r										
CO 3	Analyze	the operat	ing states of	of transmis	sion system	n, their as	sociated c	ontingencies			
	and the st	ability of	the system	and discu	iss principl	es of distr	ibution pla	anning,			
<u> </u>	Supply ru	lies, netwo	ork develop	and and	the system	i studies. (	DL-4)	d maliahilita			
004	Discuss r	enability (	veis orid	generation	u, transmis	sion, distr	ioution and	remedies			
	$(\text{RI}_2)$	n anu ana	ysis, gilu i	enaointy,	voltage ul	sturbances		TEITIEUTES			
CO 5	Discuss r	lanning a	nd implem	entation	felectric	utility act	ivities mo	rket			
	principles	s and the r	orms fram	ed by CE	RC for only	ine tradino	and exch	ange in the			
	interstate	power ma	arket. (BL-	·2)		ine traulitz		unge in the			
		1	– –	/							

	CO-PO Mapping													
CO		PO												<b>50</b>
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2	1	2		2	2	2		2	2	1
CO2	2	3	2	1	2	2		2				2	3	2
CO3	3	2	2	2	2	2		1	2	2		2	2	2
CO4	3	2	2	2	1	2		2				2	3	3
CO5	3	2	2	2	2	2		2	2	2		2	2	1
				-	l: Lov	v, 2-M	lediun	1, 3- H	ligh					



COURSE CONTENT								
MODULE – 1	Power System	10 Hours						
Power System:								
Power Systems, Planning Principles, Planning Process, Project Planning, Power Development, Power Growth, National and Regional Planning, Enterprise Resources Planning, Structure of a Power System, Power Resources, Planning Tools, Power Planning Organisation, Regulation, Scenario Planning.								
Electricity Forecasting:								
Load Requirement, System Load, Electricity Forecasting, Forecasting Techniques, Forecasting Modelling, Spatial – Load Forecasting, Peak Load - Forecast, Reactive – Load Forecast, Unloading of a System.								
At the end of the Mo	dule 1, students will be able to:							
<ol> <li>Discuss primary components of power system planning, planning methodology for optimum power system expansion, various types of generation, transmission and distribution.</li> <li>Show knowledge of forecasting of future load requirements of both demand and energy by deterministic and statistical techniques using forecasting tools.</li> </ol>								
MODULE -2	Power-System Economics	10 Hours						
Power-System Econ	iomics:							
Financial Planning, Economic Analysis, Electrification Invest Tariffs.	Techno – Economic Viability, Private Participation, Fin Economic Characteristics – Generation Units, Transmi ment, Total System Analysis, Credit - Risk Assessmen	nancial Analysis, ission, Rural nt, Optimum Investment,						
Generation Expans	ion:							
Generation Capacity Energy, Clean Coal Power Plants.	and Energy, Generation Mix, Conventional Generation Fechnologies, Distributed Power Generation, Renovation	n Resources, Nuclear on and Modernization of						
At the end of the Mo	dule 2, students will be able to:							
• Discuss meth sector	ods to mobilize resources to meet the investment requi	rement for the power						
• Understand e investment de	conomic appraisal to allocate the resources efficiently ecisions	and appreciate the						
Discuss expansion	nsion of power generation and planning for system ene	rgy in the country						
MODULE-3	Transmission & Distribution Planning:	08 Hours						
Transmission:								
Transmission Planning Criteria, Right – of – Way, Network Studies, High – Voltage Transmission, Conductors, Sub – Stations, Power Grid, Reactive Power Planning, Energy Storage.								
Distribution:	Distribution:							
Distribution Deregulation, Planning Principles, Electricity – Supply Rules, Criteria and Standards, Sub – Transmission, Basic Network, Low Voltage Direct Current Electricity, Distribution(continued): Upgradation of Existing Lines and Sub – Stations, Network Development								

Distribution(continued): Upgradation of Existing Lines and Sub – Stations, Network Development, System Studies, Urban Distribution, Rural Electrification, Villages Self – Sufficiency in Energy,



Community Power, Self – Generation. At the end of the Module 3, students will be able to: Evaluation of operating states of transmission system, their associated contingencies and the stability of the system. Discuss principles of distribution planning, supply rules, network development and the system studies **MODULE-4 Reliability and Quality** 10 Hours Reliability Models, System Reliability, Reliability and Quality Planning, Functional Zones, Generation Reliability Planning Criteria, Transmission Reliability Criteria, Distribution Reliability, Reliability Evaluation, Grid Reliability, Reliability Target, Security Requirement, Disaster Management, Quality of Supply, Reliability and Quality Roadmap. At the end of the Module 4, students will be able to: Discuss reliability criteria for generation, transmission, distribution and reliability evaluation and analysis, grid reliability, voltage disturbances and their remedies **MODULE-5 Demand-Side Planning 10 Hours Demand-Side Planning:** Demand Response, Demand – Response Programmes, Demand– Response Technologies, Energy Efficiency, Energy - Economical Products, Efficient – Energy Users, Supply – Side Efficiency, Energy Audit. **Electricity Market:** Market Principles, Power Pool, Independent System Operator, Distribution System Operator, Power Balancing, Market Participants, Power Markets, Market Rules, Bidding, Trading, Settlement System, Locational Marginal Pricing, Transmission Charges, Merchant Power, Differential Electricity, Congestion Management, Ancillary Services, Hedging, Smart Power Market. At the end of the Module 5, students will be able to: Discuss planning and implementation of electric –utility activities, market principles and the • norms framed by CERC for online trading and exchange in the interstate power market. **Total hours:** 48 hours

## Term work:

1. Open book based exam

## **Content beyond syllabus:**

1.



## Self-Study:

Contents to promote self-Learning:

SNO	MODULE	Reference
1	Power System Regulation, Scenario Planning	https://www.nrel.gov/docs/fy08osti/42297.pdf
2	Modernization of Power Plants	https://www.powermag.com/history-of-power- plant-renovation-and-modernization-in- india/#:~:text=The%20GoI%20initiated%20a%20 new,the%20existing%20thermal%20power%20pla nts.
3	Reactive Power Planning	https://www.igi-global.com/dictionary/reactive- power-planning/63461
4	Reliability and Quality Roadmap	https://www.slideshare.net/ASQwebinars/reliabilit y-roadmap-using-quality-function-deployment
5	Smart Power Market	https://www.alliedmarketresearch.com/smart-energy- market-A09434

## Text Book(s):

1. Electric Power Planning A. S. Pabla McGraw Hill, 2nd Edition, 2016

## **Online Resources:**

- 1. https://www.nrel.gov/docs/fy08osti/42297.pdf
- 2. https://www.powermag.com/history-of-power-plant-renovation-and-modernizationin-

india/#:~:text=The%20GoI%20initiated%20a%20new,the%20existing%20thermal%20power%20plants.

- 3. https://www.igi-global.com/dictionary/reactive-power-planning/63461
- 4. https://www.slideshare.net/ASQwebinars/reliability-roadmap-using-quality-function-deployment
- 5. https://www.alliedmarketresearch.com/smart-energy-market-A09434

### Web References:

1. https://nptel.ac.in/courses/108101040





NARAYANA ENGINEERING COLLEGE:GUDUR										
21EE4011	]	Reactive 1	Power Co	mpensatio	on and Ma	nagemen	t	R2021		
	Н	ours / We	ek	Total	Credit		Max Mar	rks		
	L	Т	Р	hrs	С	CIE SEE		TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requisite: Nil										
Course Objectives:										
• To	• To identify the necessity of reactive power compensation									
To describe load compensation										
• To select various types of reactive power compensation in transmission systems										
• To	contrast re	active pov	ver coordi	nation sys	tem					
• To	characteriz	ze distribu	tion side a	nd utility	side reactiv	ve power n	nanageme	nt.		
Course O	utcomes:	After suc	cessful co	ompletion	of the cou	irse, the st	udent will	l be able to:		
CO 1	Distingui	sh the imp	portance of	f load com	pensation	in symme	trical as we	ell as un		
	symmetri	cal loads	(BL-3)							
CO 2	Observe	various co	mpensatio	n methods	s in transm	ission line	es (BL-2)			
CO 3	Construc	t model fo	r reactive	power coo	ordination	(BL-3)				
<b>CO 4</b>	Understa	nd the der	nand side	reactive po	ower mana	gement (B	SL-2)			
CO 5	Understa	nd the use	r side reac	tive powe	r managen	nent (BL-2	2)			

	CO-PO Mapping													
СО	PO PS											50		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2		2					2		2	1
CO2	3	3	2	2		2					2		3	2
CO3	3	3	2	2		2					2		2	2
CO4	3	3	2	2		2					2		3	3
CO5	3	3	2	2		2					2		2	1
				1	l: Lov	v, 2-M	lediun	n, 3- H	ligh					

COURSE CONTENT								
MODULE – 1	Load Compensation	10 Hours						
Objectives and specifications – reactive power characteristics – inductive and capacitive								
approximate biasing – Load compensator as a voltage regulator – phase balancing and power factor correction of unsymmetrical loads- examples.								
At the end of the Mod	lule 1, students will be able to:							
1. Distinguish the importance of load compensation in symmetrical as well as un symmetrical								
loads (BL-3)								
MODULE -2	Steady – State Reactive Power Compensation in	10 Hours						
	Transmission System							
Uncompensated line -	- types of compensation - Passive shunt and series and	d dynamic shunt						
compensation -examp	ples Transient state reactive power compensation in tr	ansmission systems:						
Characteristic time pe	riods – passive shunt compensation – static compensa	tions- series capacitor						
compensation - comp	ensation using synchronous condensers – examples							
At the end of the Mod	lule 2, students will be able to:							
1. Observe v	1. Observe various compensation methods in transmission lines (BL-2)							
MODULE-3         Reactive Power Coordination         09 Hours								
yana Engineering College :: Gudur (Autonomous)								



Objective – Mathematical modeling – Operation planning – transmission benefits – Basic concepts of quality of power supply – disturbances- steady –state variations – effects of under voltages – frequency –Harmonics, radio frequency and electromagnetic interferences								
At the end of the Module 3, students will be able to:								
1. Construct model for reactive power coordination (BL-3)								
MODULE-4	MODULE-4Demand Side Management10 Hours							
Load patterns – basic	c methods load shaping – power tariffs- KVAR based t	ariffs penalties for						
voltage flickers and Harmonic voltage levels Distribution side Reactive power Management::								
System losses –loss reduction methods – examples – Reactive power planning – objectives –								
Economics Planning capacitor placement – retrofitting of capacitor banks								
At the end of the Module 4, students will be able to:								
1. Understand	the demand side reactive power management (BL-2)							
MODULE-5	User Side Reactive Power Management	09 Hours						
KVAR requirements	for domestic appliances - Purpose of using capacitors	- selection of capacitors						
- deciding factors - t	types of available capacitor, characteristics and Limitat	ions Reactive power						
management in elect	ric traction systems and are furnaces: Typical layout of	traction systems –						
reactive power control	ol requirements – distribution transformers- Electric are	c furnaces – basic						
operations- furnaces	transformer -filter requirements - remedial measures -	-power factor of an arc						
furnace								
At the end of the Mo	At the end of the Module 5, students will be able to:							
1. Understand the user side reactive power management (BL-2)								

Total hours: 48 hours

Ferm work:	
1.	
Content beyond syllabus:	
1. Modern tool usage to analyze the reactive power in power system	

SNO	MODULE	Reference
1	power factor correction of unsymmetrical loads	http://ethesis.nitrkl.ac.in/6395/1/E-8.pdf
2	series capacitor compensation	https://circuitglobe.com/series-compensation.html
3	radio frequency and electromagnetic interferences	https://en.wikipedia.org/wiki/Electromagnetic_inte rference
4	retrofitting of capacitor banks	https://www.theelectricalguy.in/tutorials/5-types- of-power-factor-correction-capacitor-bank- locations/
5	power factor of an arc furnace	https://www.ijert.org/research/power-quality- improvement-in-electric-arc-furnace- IJERTV4IS040198.pdf



• Reactive power control in Electric power systems by T.J.E. Miller, John Wiley and sons, 1982.

• Reactive power Management by D. M. Tagare, Tata McGraw Hill, 2004.

## **Reference Book(s):**

• Wolfgang Hofmann, Jurgen Schlabbach, Wolfgang Just "Reactive Power Compensation: A Practical Guide, April, 2012, Wiely publication.

## **Online Resources:**

- 1. http://ethesis.nitrkl.ac.in/6395/1/E-8.pdf
- 2. https://circuitglobe.com/series-compensation.html
- 3. https://en.wikipedia.org/wiki/Electromagnetic_interference
- 4. https://www.theelectricalguy.in/tutorials/5-types-of-power-factor-correction-capacitor-bank-locations/
- 5. https://www.ijert.org/research/power-quality-improvement-in-electric-arc-furnace-IJERTV4IS040198.pdf

## Web References:

1. https://www.youtube.com/watch?v=OR5Fdfh9Hbw



NARAYANA ENGINEERING COLLEGE:GUDUR									
21EE4016			POW	ER QUA	LITY			R2021	
	H	ours / Wee	ek	Total	Credit		rks		
	L	Т	Р	hrs	hrs C CIE SEE				
	3	0	0	48	3	40	60	100	
Pre-requisite: Nil									
Course Objectives:									
1. Power quality issues and standards.									
2. The sources of power quality disturbances and power transients that occur in power									
systems.									
3. The	e sources o	f harmonic	es, harmor	nic indices	, Devices f	for control	ling harmo	onic	
dis	tortion.								
4. The	e principle	of operation	on of DVF	R and UPQ	C.				
Course O	utcomes:	After succ	cessful co	ompletion	of the cou	rse, the s	tudent wil	be able to:	
CO 1	Address	power qua	lity issues	to ensure	meeting of	fstandard	s (BL-2)		
CO 2	Apply the concepts of compensation for sags and swells using voltage regulating devices (BL-3)								
CO 3	Assess ha	armonic di	stortion ar	nd its mitig	gation. (BL	4)			
<b>CO</b> 4	Understa	nd the pow	ver measur	rement dat	a accordin	g to stand	ards (BL-2	2)	
CO 5	Analyze	the power	quality im	provemen	t with cust	om power	devices (l	3L-4)	

	CO-PO Mapping													
СО	PO PSO												50	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2									2	1
CO2	3	3	2	2									3	2
CO3	3	3	2	2	2								2	2
CO4	3	3	2	2	2								3	3
CO5	3	3	2	2	2								2	1
				1	l: Low	v, 2-M	lediun	1, 3- H	ligh					

COURSE CONTENT								
MODULE – 1	INTRODUCTION	10 Hours						
Definition of Power Quality- Power Quality Terminology – Classification of Power Quality Issues-								
Magnitude Versus Du	ration Plot - Power Quality Standards - Responsibiliti	es of Suppliers and Users						
of Electric Power-CBI	EMA and ITI Curves.							
At the end of the Mod	At the end of the Module 1, students will be able to:							
1. Address power	1. Address power quality issues to ensure meeting of standards (BL-2)							
MODULE -2	TRANSIENTS, SHORT DURATION AND	10 Hours						
	LONG DURATION VARIATIONS							
Categories and Charac	teristics of Electromagnetic Phenomena in Power System	stems- Impulsive and						
Oscillatory Transients	-Interruption - Sag-Swell-Sustained Interruption - Un	der Voltage – Over						
Voltage–Outage. Sour	ces of Different Power Quality							
Disturbances- Principl	es of Regulating the Voltage- Conventional Devices	for Voltage Regulation.						
At the end of the Mod	At the end of the Module 2, students will be able to:							
1. Apply the	1. Apply the concepts of compensation for sags and swells using voltage regulating							
devices (BL-	3)							



MODULE-3	FUNDAMENTALS OF HARMONICS & APPLIED HARMONICS	09 Hours									
Harmonic Distortion	, Voltage Versus Current Distortion, Harmonics Versu	s Transients, Power									
System Quality Und	er Non Sinusoidal Conditions, Harmonic Indices, Harr	nonic Sources from									
Commercial Loads,	Harmonic Sources from Industrial Loads. Applied										
Harmonics: Effects	Of Harmonics, Harmonic Distortion Evaluations, Princ	iples of Controlling									
Harmonics, Devices for Controlling Harmonic Distortion.											
At the end of the Module 3, students will be able to:											
1. Assess harmonic distortion and its mitigation. (BL-4)											
MODULE-4	POWER QUALITY MONITORING	10 Hours									
Power Quality Benchmarking-Monitoring Considerations- Choosing Monitoring Locations- Permanent Power Quality Monitoring Equipment-Historical Perspective of Power Quality Measuring Instruments- Power Quality Measurement Equipment-Types of Instruments- Assessment of Power Quality Measurement Data- Power Quality Monitoring Standards. At the end of the Module 4, students will be able to: 1. Understand the power measurement data according to standards (BL-2)											
MODULE-5	POWER QUALITY ENHANCEMENT USING CUSTOM POWER DEVICES	09 Hours									
Introduction to Custo (SSCL)-Solid State I Dynamic Voltage Re Operation Only. At the end of the Mo	om Power Devices-Network Reconfiguring Type: Solid Breaker (SSB) -Solid State Transfer Switch (SSTS) - C estorer (DVR)-Unified Power Quality Conditioner(UPC odule 5, students will be able to:	State Current Limiter ompensating Type: QC)-Principle of									
1. Analyze the	power quality improvement with custom power device	es (BL-4)									
	Tota	al hours: 48 hours									

## Term work:

# 1.

## Content beyond syllabus:

1. AI based power quality improvement methods.

## Self-Study:

SNO	MODULE	Reference
1	Responsibilities of	https://pure.tue.nl/ws/files/2804575/712690.pdf
	Suppliers and Users of	
	Electric Power	
2	<b>Conventional Devices</b>	https://www.electrical4u.com/voltage-regulator/
	for Voltage	
	Regulation	
3	Devices for	https://www.brainkart.com/article/Devices-for-
	Controlling Harmonic	Controlling-Harmonic-Distortion 11725/
	Distortion	
4	Power Quality	https://www.engineeringenotes.com/electrical-
	Monitoring Standards	engineering/power-quality/standards-for-
		monitoring-power-quality-electricity/32560
5	Custom Power	https://www.ripublication.com/irph/ijeee_spl/ijeeev7
	Devices	n7_11.pdf



1. Electrical Power Systems Quality, Roger C. Dugan, Mark F. McGranaghan, Surya Santoso, H.Wayne Beaty, Mc Graw Hill Education (India) Pvt. Ltd., 3rd Edition, 2012.

2. Power quality, C. Sankaran, CRC Press, 2001.

## **Reference Book(s):**

1. Understanding Power quality problems – Voltage Sags and Interruptions, Math H. J. Bollen IEEE Press Series on Power Engineering, WILEY, 2007.

2. Power quality – VAR Compensation in Power Systems, R. Sastry Vedam, Mulukutla S.

Sarma, CRC Press, 2009, First Indian Reprint 2013.

3. Fundamentals of Electric Power Quality, Surya Santoso, Create Space, 2012.

## **Online Resources:**

- 1. https://pure.tue.nl/ws/files/2804575/712690.pdf
- 2. https://www.electrical4u.com/voltage-regulator/
- 3. https://www.brainkart.com/article/Devices-for-Controlling-Harmonic-Distortion_11725/
- 4. https://www.engineeringenotes.com/electrical-engineering/power-quality/standardsfor-monitoring-power-quality-electricity/32560
- 5. https://www.ripublication.com/irph/ijeee_spl/ijeeev7n7_11.pdf

## Web References:

1. https://onlinecourses.nptel.ac.in/noc21_ee103/preview



	Ν	NARAYA	NA ENGI	NEERIN	G COLLI	EGE:GUD	DUR					
21EE4021		SN	IART GR	ID TECH	INOLOGI	IES		R2021				
	Н	ours / We	ek	Total	Credit		Max Ma	rks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
	3	0	0	48	3	40	60	100				
Pre-requi	site: Nil											
Course O	bjectives:											
To understand various aspects of smart grid												
To study various smart transmission and distribution technologies												
• To appreciate distribution generation and smart consumption												
• To	know the	regulation	s and mark	ket models	for smart	grid						
Course O	utcomes:	After suc	cessful co	ompletion	of the cou	irse, the st	udent wil	l be able to:				
CO 1	Understa	nd techno	logies for s	smart grid	(BL-2)							
CO 2	Understa	nd the sm	art transmi	ssion syst	em and its	technolog	ies (BL-2)					
CO 3	Understa	nd the sm	art distribu	tion syste	m and its t	echnologie	es (BL-2)					
<b>CO 4</b>	Realize the	he distribu	ition gener	ation and	smart cons	sumption (	BL-3)					
CO 5	Know the	e regulatio	ons and ma	rket mode	els for smar	t grid (BL	2)					

	CO-PO Mapping													
СО	PO PSO												50	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2		2	2						2	1
CO2	3	3	3	2		2	2						3	2
CO3	3	3	3	2		2	2						2	2
<b>CO4</b>	3	3	3	2		2	2	2					3	3
CO5	3	3	3	2		2	2	2					2	1
				1	l: Lov	v. 2-M	[ediun	n. 3- H	ligh					

## **COURSE CONTENT**

MODULE – 1	Introduction to Smart Grids	10 Hours									
Definition, justificatio Interoperability, comm national smart grid mi	n for smart grids, smart grid conceptual model, smart nunication technologies, role of smart grids standards ssion (NSGM) by Govt. of India	grid architectures, , intelligrid initiative,									
At the end of the Module 1, students will be able to: 1. Understand technologies for smart grid (BL-2)											
MODULE -2	Smart Transmission Technologies	10 Hours									
Substation automation system (EMS), phasor At the end of the Mod	, Supervisory control and data acquisition (SCADA), measurement units (PMU), Wide area measurement ule 2, students will be able to:	energy management systems (WAMS)									

1. Understand the smart transmission system and its technologies (BL-2)



Distribution automation, our metering infrastructure (AM Management Systems (OMS At the end of the Module 3, 	age management systems, automated meter rea I), fault location isolation and service restoration S), Energy Storage, Renewable Integration students will be able to: hart distribution system and its technologies (B) ributed Generation and Smart Consumption S (DERs), smart appliances, low voltage DC (L	Ading (AMR), automated on (FLISR), Outage L-2) <b>10 Hours</b> VDC) distribution in
Management Systems (OM)At the end of the Module 3,1. Understand the snMODULE-4Distributed energy resourceshomes / buildings, home endVehicle to Grid V2G, SolarAt the end of the Module 4,1. Realize the distributedMODULE-5RegDemand Response, Tariff DConsumer privacy and dataprojects.At the end of the Module 5,	s), Energy Storage, Renewable Integration students will be able to: aart distribution system and its technologies (B ributed Generation and Smart Consumption s (DERs), smart appliances, low voltage DC (L	L-2) <b>10 Hours</b> VDC) distribution in
At the end of the Module 3,1. Understand the snMODULE-4Distributed energy resourceshomes / buildings, home endVehicle to Grid V2G, SolarAt the end of the Module 4,1. Realize the distributedMODULE-5RegDemand Response, Tariff DConsumer privacy and dataprojects.At the end of the Module 5,	students will be able to: aart distribution system and its technologies (B) ributed Generation and Smart Consumption s (DERs), smart appliances, low voltage DC (L	L-2) <b>10 Hours</b> VDC) distribution in
1. Understand the snMODULE-4DistDistributed energy resourceshomes / buildings, home energyVehicle to Grid V2G, SolarAt the end of the Module 4,1. Realize the distributedMODULE-5RegDemand Response, Tariff DConsumer privacy and dataprojects.At the end of the Module 5,	art distribution system and its technologies (B) ributed Generation and Smart Consumption s (DERs), smart appliances, low voltage DC (L	L-2) <b>10 Hours</b> VDC) distribution in
MODULE-4DistDistributed energy resource, homes / buildings, home end Vehicle to Grid V2G, SolarAt the end of the Module 4, 1. Realize the distributedMODULE-5RegDemand Response, Tariff D Consumer privacy and data projects.At the end of the Module 5,	ributed Generation and Smart Consumption s (DERs), smart appliances, low voltage DC (L	<b>10 Hours</b> VDC) distribution in
Distributed energy resource homes / buildings, home end Vehicle to Grid V2G, Solar At the end of the Module 4, 1. Realize the distribu MODULE-5 Reg Demand Response, Tariff D Consumer privacy and data projects. At the end of the Module 5,	s (DERs), smart appliances, low voltage DC (L	VDC) distribution in
At the end of the Module 4,1. Realize the distributionMODULE-5RegDemand Response, Tariff DConsumer privacy and dataprojects.At the end of the Module 5,	to Grid, Microgrid	ng, Building to Grid B2G,
1. Realize the distributionMODULE-5RegDemand Response, Tariff DConsumer privacy and dataprojects.At the end of the Module 5,	students will be able to:	
MODULE-5RegDemand Response, Tariff DConsumer privacy and dataprojects.At the end of the Module 5,	tion generation and smart consumption (BL-3)	)
Demand Response, Tariff D Consumer privacy and data projects. At the end of the Module 5,	ulations and Market Models for Smart Grid	09 Hours
At the end of the Module 5,	esign, Time of the day pricing (TOD), Time of protection, consumer engagement etc. Cost ber	use pricing (TOU), nefit analysis of smart grid
	students will be able to:	
1. Know the regulatio		
	ns and market models for smart grid (BL-2)	al hours: 48 hours
	ns and market models for smart grid (BL-2) Tot	

## **Content beyond syllabus:**

1. Cost Estimation of Smart Gird in India

## Self-Study:

SNO	MODULE	Reference
1	National smart grid mission (NSGM) by Govt. of India	https://www.nsgm.gov.in/#:~:text=NSGM%20Est ablishment,January%202016%20with%20dedicate d%20team.
2	Wide area measurement systems (WAMS)	https://www.energy.gov/sites/default/files/oeprod/ DocumentsandMedia/8-Securing_WAMS.pdf
3	Renewable Integration	https://www.energy.gov/oe/services/technology- development/renewable-energy-integration
4	Home energy management system (HEMS)	https://www.osti.gov/servlets/purl/1423114
5	Cost benefit analysis of smart grid projects	https://www.slideshare.net/sustenergy/multicriteria- and-cost-benefit-analysis-for-smart-grid-projects



- 1. Clark W Gellings, "The Smart Grid, Enabling Energy Efficiency and Demand Side Response"- CRC Press, 2009.
- 2. Jean Claude Sabonnadière, Nouredine Hadjsaïd, "Smart Grids", Wiley-ISTE, IEEE Press, May 2012

## **Reference Book(s):**

- Janaka Ekanayake, Kithsiri Liyanage, Jianzhong. Wu, Akihiko Yokoyama, Nick Jenkins, "Smart Grid: Technology and Applications"- Wiley, 2012.
- James Momoh, "Smart Grid: Fundamentals of Design and Analysis" Wiley, IEEE Press, 2012.

## **Online Resources:**

- 1. https://www.nsgm.gov.in/#:~:text=NSGM%20Establishment,January%202016%20w ith%20dedicated%20team.
- 2. https://www.energy.gov/sites/default/files/oeprod/DocumentsandMedia/8-Securing_WAMS.pdf
- 3. https://www.energy.gov/oe/services/technology-development/renewable-energyintegration
- 4. https://www.osti.gov/servlets/purl/1423114
- 5. https://www.slideshare.net/sustenergy/multicriteria-and-cost-benefit-analysis-for-smartgrid-projects

## Web References:

1. India Smart Grid Knowledge Portal



		NARAY	YANA ENG	INEERING	COLLEGI	E:GUDUR					
21EE4002			System Mod	delling and I	dentification			R2021			
	]	Hours / Wee	k	Total hrs	Credit		Max Mar	ks			
	L	Т	Р		C	CIE	ACS	TOTAL			
	3	0	0	48	3	40	60	100			
Pre-requisit	e: Nil										
Course Obj	ectives:										
1.To Understand the Modelling of Dynamic Systems											
2 To Understand the Stability margins, correlation of frequency domain and time domain											
3. To Unders	stand the Co	ncepts of lin	ear sampled	data system	S						
4. To Under	stand the con	mputation Z	2-transform								
5. To Under	stand the con	mpensation	in Z domair	n and W pla	ne						
<b>Course Out</b>	comes: Afte	r successful	completion	n of the cou	rse, the stud	ent will be	able to:				
CO 1	Learn the	design of N	Iodelling of I	Dynamic Sy	stems						
CO 2	Analyze th	e Stability	nargins, cori	relation of fr	equency don	nain and tim	e domain				
CO 3	Analyse li	near sample	d data syster	ns							
CO 4	Learn the	computation	n Z-transfori	n							
CO 5	Understand	the compe	nsation in Z	domain and	W plane						
1											

	CO-PO Mapping													
СО	PO PSO												50	
	РО	PO										PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1										1	1
CO2	3		1										1	1
CO3	1	2												1
CO4	1	2	1										1	1
CO5	1		2											2
					1: Lo	w, 2-M	ledium,	3- Hig	gh					

## COURSE CONTENT MODULE – 1

#### Modelling of Dynamic Systems

State variable Modelling of Continuous Dynamic Systems.

Solution methods for Nonlinear Differential equations. Bond Graph Techniques.

At the end of the Module 1, students will be able to:

- 1. Understand the importance of State variable approach
- 2. Analyze Nonlinear Differential equations

## **MODULE -2**

#### Classical control theory:

Review of classical control theory: Stability margins, correlation of frequency domain and time domain parameters, design specifications, compensation of continuous systems, actuator selection and design. State variable modelling of linear continuous systems, controllability and observability

At the end of the Module 2, students will be able to:

- 1. Understand the Stability margins
- 2. Analyze correlation of frequency domain and time domain parameters, design
- 3. Understand the concepts of controllability and observability

#### **MODULE-3**

### NECR B.TECH 21



**Concepts of linear sampled data systems:** Discrete equivalents of continuous data systems, reconstruction of sampled signals, sample and 0 order holds, stability of linear sampled data systems. State variable modelling of linear discrete data systems, controllability and observability.

State variable moderning of mean discrete data systems, controllability and

At the end of the Module 3, students will be able to:

- 1. Analyze stability of linear sampled signals.
- 2. Understand the State variable modelling of linear discrete data systems

## MODULE-4

### Digital Control Theory: I

Review of Z-transform. Computation of time response of Discrete Data system. Bilinear Transformation. W-plane, prewarping, inverse transformation. Design of discrete controllers.

#### At the end of the Module 4, students will be able to:

- 1. Understand the Z-transform & Bilinear Transformation
- 2. Analyze the design of discrete controllers

## **MODULE-5**

#### Digital Control Theory: II

Z-domain compensation, w-plane compensation, state variable feedback, deadbeat controller sampled data version of PID controllers. Effect of Data Digitization. Effect of finite word size, limit cycle Determination.

At the end of the Module 5, students will be able to:

- 1. Analyze compensations in Z domains, W domains
- 2. Understand the concepts of controllers

Total hours: 50 hours

#### Term work:

Assignments followed by quizzes

Content beyond syllabus:

Simulation Software. Skeletal Structure of Simulation software

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Bond Graph Techniques	CO1	https://researchonline.gcu.ac.uk/ws/portalfiles/portal/3218404/ bond_graph_modeling_postprint.pdf
2	State variable modelling of linear continuous systems	CO2	https://www.ijert.org/state-variable-analysis-of-continuous- time-systems
3	controllability and observability	CO3	https://www.ece.rutgers.edu/~gajic/psfiles/chap5traCO.pdf
4	W-plane, prewarping	CO4	https://en.wikibooks.org/wiki/Digital_Signal_Processing/Bilin ear_Transform
5	Effect of finite word size	CO5	http://www.dsp-book.narod.ru/DSPMW/03.PDF

#### Text Book(s):

1. G.P. Rao, "Identification of continuous-time systems" suggested by Kranthi Deveerasetty (Entry level)

2. Modeling & Identification of Dynamic Systems Hardcover – Import, 23 August 2016 by Lennart Ljung (Author), Torkel Glad (Author)

3. K. P. Mohandas, "Modern Control Engineering", Sanguine Technical Publishers, 2006.



## **Reference Book(s):**

1. Highlights of system identification provided by Manuel De la Sen.

. Heij, A.C.M. Ran, F. van Schagen, "Introduction to Mathematical Systems Theory: Linear Systems, Identification and Control" suggested by Mahmood Dadkhah

2.System Identification: An Introduction Book by Karel J. Keesman

## **Online Resources:**

1. https://ptolemy.berkeley.edu/books/Systems/PtolemyII_DigitalV1_02.pdf

### Web Resources:

1. https://hal.archives-ouvertes.fr/hal-00718864/document

2. https://www.mathworks.com/help/ident/gs/about-system-identification.html



		NARAY	ANA ENG	INEERING	COLLEG	E:GUDUR							
21EE4007		Α	DVANCEI	O CONTRO	L SYSTEM	IS		R2021					
	H	Hours / Week	2	Total hrs	Credit		Max Mar	ks					
	L	Т	Р		С	CIE	ACS	TOTAL					
	3	0	0	48	3	40	60	100					
Pre-requisit	e: Nil												
Course Obj	ectives:												
1.	To Underst	and state fee	edback cont	rol and state	observer								
2.	To Underst	To Understand the phase plane analysis											
3.	To Understand the Analysis of describing functions with non-linearities												
4.	To Understand the design of optimal controller												
5.	To Understand the design of optimal estimator including Kalman Filter, Lyapunov's Stability												
Course Out	comes: After	r successful	completio	n of the cou	rse, the stud	lent will be	able to:						
CO 1	Learn the	design of sta	te feedback	controller ar	nd state obse	rver							
CO 2	Analyze th	ne linear and	nonlinear s	ystems using	phase plane	e method.							
CO 3	Analyse no	onlinear syste	ems using d	escribing fur	ction metho	d							
CO 4	Learn the	optimal cont	rol problem										
CO 5	Understand	the Solution	n of Kalmaı	n Filter by du	ality princip	ole, Direct m	ethod of Lyp	anov for					
	Linear and	Nonlinear c	ontinuous ti	ime autonom	ous systems								

	CO-PO Mapping													
СО	PO PSO													60
	PO	PO	РО	PO	РО	PO	PO	PO	PO	РО	PO	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1										1	2
CO2	3		1										1	1
CO3	1	2												1
CO4	2	2	3										1	2
CO5	2		1											2
					1: Lo	w, 2-M	ledium	. 3- Hig	sh					

## COURSE CONTENT MODULE – 1

## STATE VARIABLE DESIGN:

Introduction to state model: Effect of state feedback - Pole placement design: Necessary and sufficient condition for arbitrary pole placement, State regulator design - Design of state observers- Separation principle- Design of servo systems: State feedback with integral control

At the end of the Module 1, students will be able to:

- 1. Understand the importance of State variable approach
- 2. Analyze the state observers and pole placement
- 3. Develop the State feedback with integral control

#### MODULE -2

#### PHASE PLANE ANALYSIS:

Features of linear and non-linear systems - Common physical non-linearities – Phase plane method: Basic concept, Singular points, Limit cycles, Phase trajectories - Construction of phase trajectories of linear and non-linear systems: Analytical method, Isocline method.

At the end of the Module 2, students will be able to:

- 1. Understand the Features of linear and non-linear systems
- 2. Implement the Phase plane method
- 3. Understand the Construction of phase trajectories of linear and non-linear systems

## MODULE-3



## DESCRIBING FUNCTION ANALYSIS:

Basic concepts, Derivation of describing functions for common non-linearities: Dead zone, Saturation, Relay, Hysteresis, Backlash – Describing function analysis of non-linear systems, Limit cycles, Stability of oscillations.

At the end of the Module 3, students will be able to:

- 1. Derive the describing functions for common non-linearities.
- 2. Understand the concept of Stability of oscillations

### MODULE-4

#### **OPTIMAL CONTROL:**

Introduction: Classical control and optimization, formulation of optimal control problem, Typical optimal control performance measures - Optimal state regulator design: Lyapunov equation, Matrix Riccati equation - LQR steady state optimal control – Application examples.

At the end of the Module 4, students will be able to:

- 1. Understand the formulation of optimal control problem
- 2. Analyze the optimal control performance measures
- 3. Understand the Lyapunov and Matrix Riccati equations

**MODULE-5** 

### **OPTIMAL ESTIMATION:**

Introduction: Discrete systems - Optimal estimation: Kalman Filter, Kalman Bucy Filter, Solution by duality principle - Application examples.

#### STABILITY ANALYSIS:

Stability in the sense of Lyapunov, Lyapunov's stability and Lypanov's instability theorems. Direct method of Lypanov for the Linear and Nonlinear continuous time autonomous systems.

At the end of the Module 5, students will be able to:

- 1. Analyze the operation of Kalman and Kalman Bucy Filter
- 2. Understand the Solution by duality principle
- 3. Understand the Direct method of Lypanov for autonomous systems.

Total hours: 50 hours

#### Term work:

Assignments followed by quizzes

#### Content beyond syllabus:

Real-time Embedded Control Systems

#### Self-Study:

SNO	Торіс	CO	Reference
1	state feedback controller and state observer	CO1	https://nptel.ac.in/content/storage2/courses/108103008/PDF/mod ule9/m9_lec3.pdf
2	linear and nonlinear systems using phase plane method	CO2	https://nptel.ac.in/courses/108/106/108106162/
3	Analysis of describing functions with non- linearities	CO3	https://people.unica.it/eliousai/files/2015/10/Describing- Function-analysis-v1.pdf
4	Optimal control problem	CO4	https://nptel.ac.in/courses/108/105/108105019/#
5	Solution of Kalman Filter by duality principle	CO5	https://nptel.ac.in/content/storage2/courses/101108047/module15 /Lecture%2040.pdf https://nptel.ac.in/courses/101/108/101108047/



- 1. M.Gopal, "Digital Control and State Variable Methods", 4th edition, Mc Graw Hill India, 2012
- 2. K. Ogata, 'Modern Control Engineering', 5th Edition, Pearson, 2012
- 3. K. P. Mohandas, "Modern Control Engineering", Sanguine Technical Publishers, 2006.

#### **Reference Book(s):**

1. William S Levine, "Control System Fundamentals," The Control Handbook, CRC Press, Tayler and Francies Group, 2011.

2. M.Gopal, Modern Control System Theory, 3rd edition, New Age International Publishers, 2014

#### **Online Resources:**

1. https://b-ok.asia/book/1193802/dec93b

2. https://b-ok.asia/book/459450/7e89ab

#### Web Resources:

- 1. <u>https://www.youtube.com/watch?v=bbm79-UcNN0&list=PLbMVogVj5nJTNkhtkCEKQHhPOr2bpS3za</u>
- 2. <u>https://www.youtube.com/watch?v=DSvBXXnZv34&list=PLUY5PVaLSLNEKzeQv13ZevTL5AhnQOkWX</u>



	NARAYANA ENGINEERING COLLEGE:GUDUR												
21EE4012			Digital S	Signal Pr	ocessing			R2021					
	ŀ	Iours / Wee	k	Total hrs	Credit		Max Mar	ks					
	L	Т	Р		С	CIE ACS		TOTAL					
	3	0	0	48	3	40	60	100					
Pre-requisite: Nil													
Course Obj	jectives:												
1.	To Understand Discrete-time signals and systems & properties												
2.	To Understand z- Transform, inverse z- Transform & properties												
3.	To Understand the design of low pass, high pass, band pass & stop band IIR digital filters												
4.	To Underst	and Compu	ter aided de	sign of Equi	ripple Linea	r phase FIR f	filters						
5.	To Underst	and arithme	etic round of	f errors, Lov	v sensitivity	digital filters	S						
Course Out	comos: Afta	: successful	completio	n of the cou	rea tha stud	lont will be	abla to:						
	Understand	Discrete t	i completion	nd quatarna	rse, the stuc		able to.						
01	Understand	Discrete-t	ime signals a	and systems	& properties								
CO 2	Analyze the	e z- Transf	orm, inverse	z- Transfor	m & propert	ies							
CO 3	Understand	Understand the design of low pass, high pass, band pass & stop band IIR digital filters											
CO 4	Learn Com	puter aided	design of Ed	quiripple Lin	ear phase Fl	R filters							
CO 5	Understand	arithmetic	round off er	rors, Low set	nsitivity digi	tal filters.							

					(	CO-PC	) Map	ping						
СО		PO PSO												
	РО	O PO PSO PS												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1										1	2
CO2	1		3										1	2
CO3	2	2												1
CO4	2	1	3										1	2
CO5	2		1											2
					1 · Lo	w 2-N	ledium	3- Hig	'n					

## COURSE CONTENT MODULE – 1

Short introduction, Analog to digital and Digital to Analog conversion, sampled and Hold circuit, Continuous time Fourier Transforms. Discrete-time signals and systems, Discrete-time Fourier transform- its properties and applications, Fast Fourier Transform (in time-domain and Frequency domain), IDFT and its properties.

At the end of the Module 1, students will be able to:

- 1. Understand Analog to digital and Digital to Analog conversion
- 2. Analyze Discrete-time signals & Continuous time Fourier Transforms

#### **MODULE -2**

#### z- Transforms

Definition and properties, Rational z-transforms, Region of convergence of a rational z- Transform, The inverse z-Transform, Z-Transform properties, Computation of the convolution sum of finite length sequences, The transfer function

**Digital Filter Structures:** Block Diagram representation, Equivalent structures, Basic FIR Digital Filter structures, Basic IIR Digital Filter structures, Realization of Basic structures using MATLAB, All pass filters, Computational complexity of Digital filter structures.

At the end of the Module 2, students will be able to:

- 1. Understand the Digital Filter structures
- 2. Able to Compute of the convolution sum of finite length sequences
- 3. Able to form Basic structures using MATLAB



#### MODULE-3

#### IIR Digital Filter Design:

Preliminary considerations, Bilinear transformation method of IIR Filter design, Design of low pass IIR Digital filters, Design of High pass, Band pass and band stop IIR digital filters, Spectral Transformations of IIR filter, IIR digital filter design using MATLAB, Computer aided design of IIR digital filters.

At the end of the Module 3, students will be able to:

- 1. Able to design Computer aided IIR digital filters
- 2. Understand the concept Bilinear transformation

### MODULE-4

#### FIR Digital Filter Design:

Preliminary considerations, FIR filter design based on windowed Fourier series, Computer aided design of Equiripple Linear phase FIR filters, Design of Minimum phase FIR filters, FIR digital filter design using MATLAB, Design of computationally efficient FIR digital filters.

At the end of the Module 4, students will be able to:

- 1. Understand the concept of windowed Fourier series
- 2. Analyze the Design of Minimum phase FIR filters

### **MODULE-5**

#### Analysis of Finite word length effects:

The quantization process and errors, quantization of Fixed point numbers, Quantization of floating point numbers, Analysis of coefficient quantization effects, Analysis of arithmetic round off errors, Low sensitivity digital filters, Reduction of product round off errors using error feedback, Round off errors in FFT algorithms. The basic sample rate alteration devices, Multi rate structures for sampling rate conversion, Multistage design of decimator and interpolator, The Poly phase decomposition, Arbitrary-rate sampling rate converter.

At the end of the Module 5, students will be able to:

- 1. Analyze the coefficient quantization effects
- 2. Understand the Multi rate structures for sampling rate conversion
- 3. Understand the Multistage design of decimator and interpolator.

Total hours: 50 hours

#### Term work:

Assignments followed by quizzes

#### **Content beyond syllabus:**

Nyquist Filters and some applications of digital signal processing.

#### Self-Study:

Γ	SNO	Торіс	CO	Reference
	1	Discrete-time Fourier transform- its properties	CO1	https://cnx.org/contents/KilsjSQd@10.18:AMguPRIV@11/Prope rties-of-the-DTFT
	2	Basic FIR Digital Filter structures	CO2	https://www.ni.com/docs/en-US/bundle/labview-2014-digital- filter-design-toolkit-api- ref/page/lvdfdtconcepts/fir_filter_specs.html
Ī	3	Computer aided design of IIR digital filters.	CO3	https://www.tutorialspoint.com/digital_signal_processing/dsp_computer_aided_design.htm
	4	Design of Minimum phase FIR filters	CO4	https://www.dsprelated.com/freebooks/filters/Minimum_Phase_F ilters.html
	5	Analysis of arithmetic round off errors	CO5	https://en.wikipedia.org/wiki/Round-off_error



- 1. S.K. Mitra, Digital Signal Processing-, Tata McGraw-Hill, Third Edition, 2006.
- 2. B.P. Lathi, Principle of Signal Processing and Linear Systems-, Oxford International Student Version, 2009
- 3. M. Mondal and A Asif, Continuous and Discrete Time Signals and Systems, Cambridge,2007

## **Reference Book(s):**

1. Li Tan, Digital Signal Processing- Fundamentals and Applications-, Indian reprint, Elsevier, 2008.

2. Alan V. Oppenheim, Ronald W. Schafer, and John R.Buck, Discrete-Time Signal Processing-, Pearson Edu, 2008.

### Online Resources:

1. https://www.tutorialspoint.com/digital_signal_processing/dsp_unstable_systems.htm

2.softwaretestinghelp.com/digital-signal-processing-tutorial/

### Web Resources:

1. https://www.youtube.com/watch?v=6dFnpz_AEyA

2. https://www.youtube.com/watch?v=JpHXMcDxNiA

3.https://www.youtube.com/watch?v=p8cina5Ke_c



NARAYANA ENGINEERING COLLEGE:GUDUR											
21EE4017		MUI	LTIVARIA	BLE CONT	ROL SYST	EMS		R2021			
	H	Hours / Wee	k	Total hrs	hrs Credit		Max Mar	ks			
	L	Т	Р		С	CIE	ACS	TOTAL			
	3	0	0	48	3	40	60	100			
Pre-requisite: Nil											
Course Objectives:											
1. To Underst	1. To Understand Multivariable Connections, Multivariable Representation										
2. To Unders	stand Perform	mance Speci	fication in N	<i>Iultivariable</i>	Systems						
3. To Unders	stand Stabili	ty of Multiv	ariable Feed	back							
4. To Unders	stand Contro	ollability and	Observabili	ty and Reali	zation in Mu	iltivariable S	ystems				
5. To Unders	stand Multiv	ariable Con	trol System l	Design							
Course Out	comes: Afte	r successful	completion	n of the cou	rse, the stud	ent will be	able to:				
CO 1	Learn the	Multivariabl	e Connectio	ns, Multivar	iable Repres	entation					
CO 2	Analyze th	e Performan	ce Specifica	tion in Multi	variable Sys	stems.					
CO 3	Analyse Stability of Multivariable Feedback										
<b>CO 4</b>	Learn the	Controllabil	ity and Obse	rvability and	Realization	in Multivar	iable System	S			
CO 5	Understand	the Multiv	ariable Cont	trol System I	Design						

	CO-PO Mapping													
СО		PO PSO												
	РО	РО	РО	PO	РО	РО	РО	РО	РО	РО	РО	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1										1	2
CO2	3		1										1	1
CO3	1	2												1
CO4	2	2	3										1	2
CO5	2		1											2
					1: Lo	w, 2-N	ledium	, 3- Hig	gh					

## COURSE CONTENT MODULE – 1

Introduction in Multivariable Control Systems:

Multivariable Connections, Multivariable Representation

**Poles and Zeros in Multivariable Systems** : Multivariable Poles and Zeros, Direction of Poles and Zeros, Smith-McMillan Form, Matrix Fraction Description, Transmission Zero Assignment

At the end of the Module 1, students will be able to:

1. Understand the Multivariable Control Systems

2. Analyze the Transmission Zero Assignment

### **MODULE -2**

Performance Specification in Mulivariable Systems and Their Limitations:

A Brief Review of Linear Control System, Scaling and Performance, Shaping Closed-loop Transfer Function, Fundamental Limitation on Performance

At the end of the Module 2, students will be able to:

- 1. Understand the Performance Specification in Mulivariable Systems
- 2. Understand the Limitations

#### MODULE-3



**Stability of Multivariable Feedback Control Systems:** Well-Posedness of Feedback Loop, Internal Stability, The Nyquist Stability Criterion, Co-prime Factorization over Stable Transfer Functions, Stabilizing Controllers, Strong and Simultaneous Stabilization

At the end of the Module 3, students will be able to:

- 1. Understand the concept of Stabilizing Controllers
- 2. Understand the concept of Stability

## **MODULE-4**

#### Controllability and Observability and Realization in Multivariable Systems:

Controllability and Observability, Output Controllability, Realization, Model Order Reduction

At the end of the Module 4, students will be able to:

- 1. Understand the concept of Controllability and Observability
- 2. Analyze the Realization techniques

### MODULE-5

**Multivariable Control System Design**: Sequential Loop Closing, Characteristic-Locus Method, PI Controller for MIMO Systems ,Decoupling, Diagonal Controller, Nyquist-Array Method

At the end of the Module 5, students will be able to:

- 1. Analyze the Sequential Loop Closing
- 2. Understand the Decoupling, Diagonal Controllers

Total hours: 50 hours

### Term work:

Assignments followed by quizzes

Content beyond syllabus:

Robust stability and performance analysis via integral quadratic constraints.

#### Self-Study:

SNO	Торіс	CO	Reference
1	Multivariable Control Systems	CO1	https://www.youtube.com/watch?v=mMtFuYeJp5A
2	Scaling and Performance ns	CO2	https://www.dynatrace.com/news/blog/performance-vs- scalability/
3	Stability of Multivariable Feedback Control Systems	CO3	https://www.sciencedirect.com/topics/engineering/multivariab le-control-systems
4	Model Order Reduction	CO4	https://www.hindawi.com/journals/sv/2021/6631180/
5	Controllability and Observability and Realization in Multivariable Systems	CO5	http://profsite.um.ac.ir/~karimpor/multi/Multivariable_lec5.pdf



1.Multivariable Control Systems: An Engineering Approach (Advanced Textbooks in Control and Signal Processing) 2004th Edition, Kindle Edition by <u>Pedro Albertos</u> (Author), <u>Sala</u> <u>Antonio</u> (Author) Format: Kindle Edition

#### **Reference Book(s):**

1. Multivariable Feedback Control - Analysis and Design 2e (English, Paperback, Skogestad S)

### **Online Resources:**

1. https://research.iaun.ac.ir/pd/mahmoodian/pdfs/UploadFile_3352.pdf

#### Web Resources:

1. https://research.iaun.ac.ir/pd/mahmoodian/pdfs/UploadFile_3352.pdf



	NARAYANA ENGINEERING COLLEGE:GUDUR											
21EE4022		RE	AL TIME	CONTRO	L SYSTE	MS		R2021				
	I	Hours / Week	2	Total hrs	Credit		Max Mar	ks				
	L	Т	Р		С	CIE	ACS	TOTAL				
	3	0	0	48	3	40	60	100				
Pre-requisite	Pre-requisite: Nil											
Course Objectives:												
1.	To Understand Real - time systems											
2.	To Understand Hierarchical representation of complex DES											
3.	To Understand Real - time Operating Systems, Interrupts											
4.	To Understand Real – time Programming.											
5.	To Underst	tand Real - t	ime process	and applic	ations							
Course Out	comes: After	r successful	completion	n of the cou	rse, the stud	ent will be	able to:					
CO 1	Analyze th	e Characteris	stic features	of RT applie	cations and d	levelop featı	ares from No	n - RT and Off				
	- line system	m										
CO 2	Understand	the Hierarc	hical repres	entation and	analyzing L	ogical prop.	erties					
CO 3	Derive the	Example	of checkin	g safety a	nd timing	properties	and also u	nderstand the				
	Requireme	nts and featu	res of real -	time Compu	ting Enviro	nments						
CO 4	Understand	l and analyze	e the Real –	time Program	nming for re	al-time system	ems.					
CO 5	Analyze th	e Real - time	e process, A	pplications a	nd understar	nd the Distri	buted Real -	time systems				

					(	CO-PC	) Map	ping						
СО		PO PSO												
	РО	O PO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2									1	2
CO2	3	3	2	2									1	1
CO3	3	3	2	2										1
CO4	3	3	2	2									1	2
CO5	3	3	2	2										2
					1: Lo	w, 2-M	ledium	, 3- Hig	;h					

## COURSE CONTENT MODULE – 1

Introduction to Real - time systems: Typical examples of RTS, Characteristic features of RT Applications. Structural, Functional and Performance requirement of Reactive RTS. Distinctive Features from Non - RT and Off - line system. Modelling RTS: Representation of time, Concurrency and Distributedness in discrete event systems.

At the end of the Module 1, students will be able to:

- 1. Understand the Real time systems
- 2. Analyze the Characteristic features of RT applications
- 3. Develop features from Non RT and Off line system

#### **MODULE -2**

Hierarchical representation of complex DES. Input, Output and Communication. Examples of Modelling practical systems as RT DES. Modelling programs as RTS. Analyzing RTS: Analyzing Logical properties of DES such as Reachability, Deadlock etc. Analyzing timing related properties, Specification and Verification of RT DES properties.

At the end of the Module 2, students will be able to:

- 1. Understand the Hierarchical representation
  - 2. Analyzing Logical properties

#### **MODULE-3**



Temporal logic, Model checking of industrial systems. Requirements and features of real - time Computing Environments: Real - time Operating Systems, Interrupts, clock, Device support.

At the end of the Module 3, students will be able to:

- 1. Derive the Example of checking safety and timing properties.
- 2. Understand the Requirements and features of real time Computing Environments

### **MODULE-4**

Real time System, Multi tasking, Static and Dynamical Scheduling of resource Allocation, Real – time Programming.

At the end of the Module 4, students will be able to:

- 1. Understand the Real time System
- 2. Analyze the Real time Programming.

#### **MODULE-5**

Real - time process and applications, Distributed Real - time systems.

At the end of the Module 5, students will be able to:

- 1. Analyze the Real time process
- 2. Understand the Real time Applications
- 3. Understand the Distributed Real time systems

Total hours: 48 hours

#### Term work:

Assignments followed by quizzes

#### Content beyond syllabus:

Dynamic Scheduling Algorithms

#### Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Distributedness in discrete event systems	CO1	https://www.intechopen.com/chapters/38818
2	Specification and Verification of RT DES properties	CO2	https://hal.archives-ouvertes.fr/hal-01589479/document
3	Requirements and features of real - time Computing Environments	CO3	https://www.sciencedirect.com/topics/computer-science/real- time-computing
4	Multi tasking of Real time System	CO4	https://www.razorrobotics.com/multitasking-real-time- operating-systems/
5	Distributed Real - time systems	CO5	https://link.springer.com/book/10.1007/978-3-030-22570-4

#### Text Book(s):

1. Jane W S Liu, "Real- Time Systems", Pearson publications, 1st edition, 2006.

#### **Reference Book(s):**

1. Rajib Mall, "R

eal-Time Systems: Theory and Practice", Pearson Education India, 2009.

# Department of E.E.E :: 2021-2022 Online Resources:



- 1. https://www.intechopen.com/chapters/38818
- https://hal.archives-ouvertes.fr/hal-01589479/document
   https://www.sciencedirect.com/topics/computer-science/real-time-computing
- 4. https://www.razorrobotics.com/multitasking-real-time-operating-systems/ 5. https://link.springer.com/book/10.1007/978-3-030-22570-4

## Web Resources:

1. https://onlinecourses.nptel.ac.in/noc21_cs98/preview
NECR B.TECH 21



	NARAYANA ENGINEERING COLLEGE:GUDUR									
21EE4003		MACH	INE MOI	DELING A	AND ANA	LYSIS		R2021		
	Η	ours / Wee	ek	Total	Credit	Max Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requis	ite: Funda	mental co	ncepts of l	Electrical	Machines a	and Electro	o Magnetic	c Fields.		
Course C	)bjectives:									
Able to unc	lerstand the	e								
1. Ab	le to analyz	ze the Bas	ic Concept	s of Mode	eling Electr	ical machi	ines.			
2. To	understand	l Mathema	tical mode	el of the D	C Motor.					
3. Ab	le to analyz	ze the dyna	amic mode	eling and p	hase trans	formation.				
4. To	understand	d the Mode	eling of Ind	duction M	achine.					
5. To	understand	l the Dyna	mic Analy	sis of Syn	chronous 1	Machine.				
Course O	utcomes: .	After succ	cessful cor	npletion o	of the cour	se, the stu	dent will	be able to:		
CO 1	Understar	nd the bas	ic concepts	s of AC/ D	C machine	e modeling	g. (BL-2)			
CO 2	Understar	nd the Ma	thematical	model of	the DC Ma	achine. (Bl	L-2)			
CO 3	Analyze	the Refere	nce frame	theory mo	odel of Ele	ctrical ma	chine.(BL	-3)		
CO 4	Analyze	Analyze the steady state and dynamic state operation of three-phase induction								
04	machine.	machine.(BL-3)								
CO 5	Analyze	Analyze the modeling and simulation of three phase synchronous machine .(BL-								
	3)									
5. To Course O CO 1 CO 2 CO 3 CO 4 CO 5	understand utcomes: J Understan Analyze Analyze machine. Analyze 3)	I the Dyna After succ nd the basis nd the Mar the Refere the steady (BL-3) the model	mic Analy cessful cor ic concepts thematical nce frame y state and ing and si	rsis of Syn npletion of s of AC/ D model of theory model d dynamic mulation of	chronous 1 of the cour C machine the DC Ma odel of Ele c state ope of three ph	Machine. se, the stu e modeling achine. (Bl ctrical ma eration of ase synch	dent will g. (BL-2) L-2) chine.(BL three-pha ronous ma	-3) se induction inchine .(Bl		

	CO-PO Mapping													
		PO PSO											<b>50</b>	
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2		2							1	3
CO2	2	2	2										2	3
CO3	2	2	2			2							2	3
CO4	3	2											2	3
CO5	2	3				2							1	3
					l:Low	v, 2-M	lediun	1, 3- H	ligh					

COURSE CONTENT										
MODULE – 1	BASIC CONCEPTS OF MODELING	08 Hours								
Basic Two - pole Machi	ne representation of Commutator mach	ines, 3-phase synchronous machine								
with and without damper	bars and 3-phase induction machine, 1	Kron's primitive Machine - voltage,								
current and Torque equat	ions.									
At the end of the Module	1, students will be able to:									
1. Understand th	e Two - pole Machine representation of	Commutator machines. (BL-2)								
2. Study the Kro	n's primitive Machine. (BL-2)									
3. Understand th	e voltage, current and Torque equations	. (BL-2)								
		08 Hours								
MODULE -2	MODELING OF DC MACHINES									
Mathematical model of	separately excited D.C motor -Stead	ly State analysis - Transient State								
analysis - Sudden applica	ation of Inertia Load - Transfer function	n of Separately excited D.C Motor -								
Mathematical model of Dependent perturbations.	D.C Series motor, Shunt motor - Linea	rization Techniques for small								

Department of E.E.E :: 2021	-2022 NECR B.TECH 2	1
At the end of the Module	2, students will be able to:	<u> </u>
1. Compare the Mat	hematical model of Different of DC Motor	s. (BL-2)
2. Explain the Stead	y State analysis. (BL-2)	
3. Understand the Li	nearization Techniques for small perturbat	ions. (BL-2)
MODULE-3	<b>REFERENCE FRAME THEORY</b>	08 Hours
Reference frame theory	Real time model of a two phase induction	on machine - three phase to two
phase transformation - D	ynamic modeling of three phase Induction	Machine - Stator reference frame
model - Rotor reference f	frame model Synchronously rotating referen	nce frame model.
At the end of the Module	3, students will be able to:	
1. Understand the R	eal time model of a two phase induction ma	achine. (BL-2)
2. Explain the three	phase to two phase transformation. (BL-2)	)
3. Understand the S	tator and Rotor reference frame model. (B)	L-2)
MODULE-4	MODELING OF INDUCTION MACHINES	08 Hours
Three phase induction m	nachine, equivalent circuit and analysis of	f steady state operation – free
acceleration characteristi	cs - voltage and torque equations in mad	chine variables and arbitrary
Reference frame variable	es - analysis of dynamic performance for	load torque variations.
At the end of the Module	4, students will be able to:	
1. Demonstrate on st	eady state operation of induction machine	e. (BL-2)
2. Understand the vo	ltage and torque equations in induction m	nachines. (BL-2)
3. Analysis of dynam	nic performance of induction machines. (	BL-3)
MODULE-5	MODELING AND ANALYSIS OF SYNCHRONOUS MACHINES	08 Hours
Synchronous machine i electromagnetic torque - machine. Dynamic performance o	inductances – voltage equations in the current in terms of flux linkages - simula of synchronous machine, three -phase f	rotor's dq0 reference frame - ation of three phase synchronous fault, comparison of actual and
approximate transient tore	que characteristics, Equal area criteria.	
At the end of the Module	5, students will be able to:	
1. Understand the el	ectromagnetic torque.(BL-2)	
2. Explain the Synch	ronous machine inductances. (BL-2)	
3. Demonstrate on s	simulation of three phase synchronous mac	hine.(BL-2)
		1 otal nours: 40 hours
		L

# Term work:

- 1. Compare and Contrast the Mathematical model of different types of DC Motors submit the report.
- 2. Compare and Contrast the 3 phase synchronous machine with and without damper bars and submit the report.
- 3. Analyze the two phase induction machine and three phase induction machine and submit the report.
- 4. Analyze the Synchronous motor and PM Synchronous motor and submit the report.

# **Content beyond syllabus:**

- 1. Symmetrical Two phase Induction Machine.
- 2. Unsymmetrical Two phase Induction Machine.
- 3. Modeling of PM Synchronous motor.



Cor	Contents to promote self-Learning:									
S	SNO	Module	Reference							
	1	BASIC CONCEPTS OF MODELING	https://nptel.ac.in/courses/112/107/112107220/							
	2	MODELING OF DC MACHINES	https://nptel.ac.in/courses/108/106/108106023/							
	3	REFERENCE FRAME THEORY	http://nptel.vtu.ac.in/econtent/courses/EEE/06EE 63/index.php							
	4	MODELING OF INDUCTION MACHINES	https://nptel.ac.in/courses/108/106/108106023/							
	5	MODELING AND ANALYSIS OF SYNCHRONOUS MACHINES	https://nptel.ac.in/courses/108/101/108101004/							
	6	DYNAMIC ANALYSIS OF SYNCHRONOUS MACHINES	https://nptel.ac.in/courses/108/106/108106023/							

- 1. R. Krishnan, "Electric Motor Drives Modeling, Analysis & Control", PHI Learning Private Ltd, 2009.
- 2. Paul C.Krause, Oleg Wasyzczuk, Scott S, Sudhoff, "Analysis of Electric Machinery and Drive Systems", John Wiley, Second Edition, 2010.
- 2. Sawhney, A.K., "A Course in Electrical Machine Design", Dhanpat Rai & Sons, New Delhi, 2013.

#### **Reference Book(s):**

- 1. P S Bimbhra, "Generalized Theory of Electrical Machines", Khanna Publishers, 5th Edition, 2014.
- 2. A.E, Fitzgerald, Charles Kingsley, Jr, and Stephan D, Umanx, "Electric Machinery", Tata McGraw Hill, 5th Edition, 1992.
- 3. Chee Mun Ong –"Dynamic simulation of Electric machinery using MATLAB / Simulink", Prentice Hall of India Publications.
- 4. Ramamoorthy M, "Computer Aided Design of Electrical Equipment", East-West Press.

## **Online Resources/ Web References:**

- 1. <u>https://books.google.co.in/books?id=0_D6gfUHjcEC&printsec=frontcover#v=onepage&q&f=false</u>
- 2. http://nptel.ac.in/courses/108106023/
- 3. https://easyengineering.net/electrical-machinery-by-bimbhra/
- 4. https://www.hindawi.com/journals/mpe/2017/7348263/
- 5. https://nptel.ac.in/courses/108/106/108106023/
- 6. https://nptel.ac.in/courses/108/102/108102146/
- 7. http://www.ijrimsec.com/assoc art/volume7 1/Ch 10.pdf
- 8. https://nptel.ac.in/courses/108/106/108106023/#

со

CO1

CO2

CO3

**CO4** 

CO5

PO

1

2

2

2

2

2

PO

2

3

3

3

3

PO

3

3

3

3

3

PO

4

3

3

3

3

PO

5

3

3

3

3



PSO

PSO

2

PSO

1

3

3

3

3

NARAYANA ENGINEERING COLLEGE:GUDUR										
21EE4008			Electrica	al Machin	e Design			R2021		
	Н	ours / Wee	k	Total	Credit	Max Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requis and Synch	Pre-requisite: Basic Electrical Engineering, DC Machines, Induction machines, Transformers and Synchronous machines									
Course Ob	jectives:									
1. To	discuss the	properties	of electrica	I, magnetic	and insula	ting materi	ials used in	the design of		
ele	electrical machines.									
2. To	design arma	ature and fi	eld system:	s for D.C. m	achines.					
3. To	design core	, yoke, win	dings and c	ooling syste	ems of tran	sformers.				
4. To	design state	or and roto	of induction	on machine	s.					
5. To	design stato	or and roto	^r of synchro	onous mach	nines and st	udy their t	hermal beh	avior.		
Course Ou	<b>tcomes</b> : Af	ter success	ful comple	etion of th	e course, tl	ne student	: will be abl	e to:		
CO 1	Understar	nd the basi	c principles	of machine	e design. (B	L-2)				
CO 2	Analyze tł	ne perform	ance desigr	n DC motor	. (BL-4)					
CO 3	Analyze th	ne perform	ance desigr	n winding a	nd core of	transforme	er. (BL-4)			
CO 4	Analyze tł	ne perform	ance desigr	n winding a	nd core of I	rotating ele	ectrical mac	hine. (BL-4)		
CO 5	Analyze tł (BL-4)	ne short cir	cuit ratio a	nd its effec	ts on perfo	rmance of	synchronou	s machines.		

1: L	ow,	2-M	ledium	, 3-	High

**CO-PO Mapping** 

PO

7

PO

8

PO

9

PO

10

PO

11

PO

12

PO

PO

6

COURSE CONTENT										
MODULE – 1	MODULE – 1 PRINCIPLES OF ELECTRICAL MACHINE DESIGN									
Introduction, considerations for the design of electrical machines, limitations. Different types of materials and insulators used in electrical machines										
At the end of the Mod	ule 1, students will be able to:									
1. Understar	d the limitations of electrical machines (BL-2)									
2. Understar	nd the different types of material used in electrical made	chines. (BL-2)								
3. Understar	nd the different types of Insulators used in electrical M	achines. (BL-2)								
MODULE -2	DESIGN OF DC MACHINES	10Hrs								
Output equation, choi	ce of specific loadings and choice of number of poles,	, design of Main dimensions								
of the DC machines, I	of the DC machines, Design of armature slot dimensions, commutator and brushes, magnetic circuit -									
estimation of ampere turns, design of yoke and poles- main and inter poles, field windings – shunt,										
series and inter poles.										



At the end of the Module 2, students will be able to: 1. Explain the output equation of DC machine. (BL-2) 2. Explain the choice of specific loadings for DC machine. (BL-2) 3. Understand the design of main dimension of DC machine and Design of armature slot, commutator voke and pole. (BL-2) **MODULE-3 DESIGN OF TRANSFORMERS** 10Hrs Output Equations for single phase and three phase transformers, expression for volts/turn, Main Dimensions, Window space factor, Design of core and winding, Overall dimensions , expression for leakage reactance and voltage regulation, No load current , Temperature rise in Transformers ,Design of Tank, Methods of cooling of Transformers. At the end of the Module 3. students will be able to: 1. Understand the main dimensions of transformers. (BL-2) 2. Understand the calculation of no load current.(BL-2) 3. Understand the design of transformer tank. (BL-2) **MODULE-4 Design of Induction Motors** 10Hrs Output Equation, Choice of Specific Loadings, Main Dimensions of Stator. Design of stator slots and Winding, Choice of Length Air Gap, Estimation of Number of Slots for Squirrel Cage Rotor. Design of Rotor Bars and End Ring. Design of Slip Ring rotor. Estimation of No Load Current and Leakage Reactance of single phase and Three Phase Induction motor. At the end of the Module 4, students will be able to: 1. Understand the specific loadings and main dimensions of single phase and three phase induction motor. (BL-2) 2. Understand the design of slip ring and squirrel cage rotor. (BL-2) 3. Understand the Design of end rings and slip rings. (BL-2) **MODULE-5 Design of Three Phase Synchronous Machines** 10Hrs Output Equation, Choice of Specific Loadings, Short Circuit Ratio, Main Dimensions of Stator. Design of stator slots and Winding. Design of Salient and non- salient Pole Rotors. Magnetic Circuit and Field Winding. At the end of the Module 6, students will be able to: 1. Understand the output equation of synchronous machines. (BL-2) 2. Understand the knowledge applied by designing a machine for an industrial application. (BL-2) 3. Explain the Magnetic Circuit and Field Winding of a synchronous machine. (BL-2) Total hours: 48 hours

#### Term work:

- 1. Field trip visit at Voltactive Power Technologies Pvt Ltd Vijayawada to understand the design of transformer .
- 2. Develop armature winding diagram for DC and AC machines Develop a layout for substation using the standard symbols for substation equipment through Auto CADD
- 3. Draw sectional views of core and shell types transformers using the design data through Auto CADD
- 4. Draw sectional views of assembled DC machine or its parts using the design data or the sketches through Auto CADD.

#### Content beyond syllabus:

- 1. Design of small transformer
- 2. Modelling Of Electro Static and Magnetic Device.



3. Estimation of material and electrical installation of motor in different industry

<b>f-Study</b> ontents	: s to promote self-Learning:	
SNO	Торіс	Reference
1	Principles Of Electrical Machine Design	http://nptel.vtu.ac.in/econtent/courses/EEE/06EE63/in dex.php
2	Design of DC Machines	https://nptel.ac.in/courses/108/106/108106023/
3	Design of Transformers	http://nptel.vtu.ac.in/econtent/courses/EEE/06EE63/ir dex.php
4	Design of Induction Motors	https://nptel.ac.in/courses/108/106/108106023/ https://nptel.ac.in/courses/108/106/108106023/
5	Design of Three Phase Synchronous Machines	https://nptel.ac.in/courses/108/106/108106023/

#### Text Book(s):

- 1. Sawhney, A.K., 'A Course in Electrical Machine Design', Dhanpat Rai & Sons, New Delhi, 2011.
- 2. M.V.Deshpande "Design and Testing of Electrical Machine Design" Wheeler Publications, 2010.
- 3. V.N. Mittle and A. Mittle, "Design of Electrical Machines", 5th Edition, Standard Publications and Distributors, 2014, New Delhi.

#### Reference Book(s):

- 1. A.Shanmuga Sundaram, G.Gangadharan, R.Palani 'Electrical Machine Design Data Book', New Age International Pvt. Ltd., Reprint, 2007.
- 2. R.K.Agarwal "Principles of Electrical Machine Design" Esskay Publications, 5th Edition Delhi, 2014.
- 3. Sen, S.K., 'Principles of Electrical Machine Designs with Computer Programmes', Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, 1987
- 4. Ramamoorthy M, "Computer Aided Design of Electrical Equipment", East-West Press.
- 5. M. N. O. Sadiku, "Numerical techniques in Electromagnetics", CRC Press Edition-2001.
- 6. M.V. Deshpande, "Design and Testing of Electrical Machines" PHI learning, New Delhi.

#### Online Resources:

https://nptel.ac.in/courses/108/106/108106023/

#### Web Resources:

http://nptel.vtu.ac.in/econtent/courses/EEE/06EE63/index.php

JuhaPyrhonen, TapaniJokinen, Valeria Hrabovcova "Design of Rotating Electrical Machines", ISBN: 978-0-470-69516-6. Willey Publication Hardcover. 538 pages. February 2009. .



NARAYANA ENGINEERING COLLEGE:GUDUR										
21EE4013		Program	nmable Cor	ntrol Device	es and Appl	ications		R2021		
	Н	ours / Wee	k	Total	Credit	Max Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requisite: To Learn about Power Electronic devices, Semiconductor drives, Energy										
storage sy	storage systems( Battery, Fuel Cell, Super Capacitor etc).									
Course Obj	ectives:									
1.	Understand the basic functions and types of PLCs.									
2.	Get exposure of Easy Veep software, its applications.									
3.	Classification of PLCs and applications									
4.	Programm	ning using P	LCs .							
5.	Troublesh	ooting aspe	ects using P	LCs.						
Course Out	comes: Aft	ter success	ful comple	etion of th	e course, tł	ne student	will be abl	e to:		
CO 1	Understa	nd differei	nt types of	PLCs (BI	L-2)					
CO 2	Understar	nd the usag	e of Easy V	eep softwa	re (BL-1)					
CO 3	Understa	nd the har	dware deta	ils of Alle	n Bradley	PLC . (BL	L-2)			
CO 4	Program	ning of PI	Cs.(BL-	2)						
CO 5	Know abo	out few app	plications of	of PLCs in	different fi	elds of Sc	ience and [	Fechnology .		
	(BL-2)									

CO-PO Mapping														
СО		PO PSO												
	PO	PO	РО	PO	РО	РО	РО	РО	РО	РО	PO	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2						2						2	3
CO2	2												2	2
CO3	3		1										1	2
CO4	2												1	
CO5	2												2	1
					1: Lov	<i>N</i> , 2-M	edium	, 3- Hi	gh					

COURSE CONTENT									
MODULE – 1	INTRODUCTION	8 Hours							
Basic functions of PL	Basic functions of PLCs, Mechanical relays versus PLC, Different types of PLC's – AllenBradley –								
Micrologix: ML1000,	ML1100, SLC500, Compact Logix, Mitsubishi FX series, HMI	's, Processor and I/O							
cards.									
At the end of the Mo	dule 1, students will be able to:								
1. To under	stand about basic functions of PLCs. (BL-2)								
2. To disting	uish between PLCs and Mechanical relays. $(\mathrm{BL} extsf{-}2)$								
3.To know a	bout Processor and I/O cards. (BL-2)								
MODULE -2	Logic diagrams	8 Hours							
Introduction to Ea	sy Veep software, Link between mechanical, electrica	l and programming							
documentation,	Logic diagrams, Flip-Flop Logic, M8000, M80	01 internal bits							
interpretation, Bir	ary code, data table, manipulation.								
<b>^</b>	· · ·								



At the end of the Module 2, students will be able to: 1. To know about Easy Veep software .(BL-1) 2. To know about Logic diagrams. (BL-2) MODULE-3 PLC software and applications 8 Hours PLC software and applications, Boolean algebra – understanding binary code, ADD and SUB functions, UP and Down Counters, Introduction to k1Y0, MOV function, CPR and ZCP functions, SHWT and SHRD instructions, Introduction to Absolutely Drum Instruction. At the end of the Module 3, students will be able to: 1. To know about basic features of PLCs. (BL-2) 2. To know about various instructions of PLC. (BL-2) MODULE-4 PLC Hardware 10 Hours Allen Bradley PLC: Introduction to Rockwell Software, Hardware focus, Hardware considerations (Field wiring, Master Control Relay, VFD), Basic programming and applications, Cascade control – subroutine, Different programs. At the end of the Module 4, students will be able to: 1. To know about various PLC versions. (BL-2) 2. To understand about Cascade control and subroutines. (BL-1) MODULE-5 PLC IC applications 10 Hours Programming instructions: Instructions and binary interpretation, Bit Instruction, Timers and counters, Comparison instructions, Programming Instructions - Math instructions, Move and Logical Instructions, Discussions of programming, communications for PLC-Robotic arm, Exercise of setup and monitoring. At the end of the Module 6, students will be able to: 1. To know about various Programming instructions. (BL-1) 2. To understand Math instructions in PLCs. (BL-2) 3. To understand about Communications with PLC using set up and monitoring. (BL-2) Total hours: 44 hours

## Term work:

Term work contains minimum two group assignments followed by seminars and quiz's

## Content beyond syllabus:

- **1.** Hybridization of different energy storage devices
- 2. Mechanics of Electric Vehicles

#### Self-Study:

SNO	Торіс	СО	Reference								
1	Introduction to PLC	CO1	https://www.youtube.com/watch?v=PbAGI_mv5XI								
2	PLC logic circuits	CO2	https://www.youtube.com/watch?v=X3xGqdb0DAA								
3	PLC software	CO3	https://www.youtube.com/results?search_query=PLC+s								
	applications		oftware+								



4	PLC Hardware	CO4	https://www.youtube.com/results?search_query=plc+har
	applications		dware+components
5	PLC IC applications	CO5	https://www.youtube.com/watch?v=JvTCgq5vss0

1. C. Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.

2. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.

3. Electric Vehicle Technology Explained-James Larminie, John Lowry-John Wiley & Sons Ltd,-2003

4. Electric & Hybrid Vehicles-Design Fundamentals-Iqbal Hussain, Second Edition, CRCPress, 2011

## Reference Book(s):

1. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.

2. T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016.

3. Iqbal Husain, "Electric and Hybrid Electric Vehicles", CRC Press, 2011.

4. Wei Liu, "Hybrid Electric Vehicle System Modeling and Control", Second Edition, WILEY, 2017

#### Online Resources / Web References:

1. https://b-ok.asia/book/1226776/eceb4b

2. https://b-ok.asia/book/3357286/21e776

3.<u>http://ceb.ac.in/knowledge-center/E-</u>

BOOKS/Modern%20Electric,%20Hybrid%20Electric%20&%20Fuel%20Cell%20Vehicles%20-

%20Mehrdad%20Ehsani.pdf

4. https://b-ok.asia/book/3516646/6fe038

5. <u>https://nptel.ac.in/courses/108/103/108103009/</u>

6. https://www.youtube.com/watch?v=V004WUdpHeA&list=PLIYm0-AHZdZRLYSylFinxkspWmcgNvbtl

7. https://www.youtube.com/watch?v=11e_d3Q9jEc



		NARAYA	NA ENG	INEERING	G COLLEG	ie:GUDU	R				
21EE4018					R2021						
	Н	ours / Wee	k	Total	Credit	Max Marks					
	L	L T P hrs C CIE SEE TOT									
	3	0	0	48	3	40	60	100			
<b>Pre-requisite</b> : To Learn about Power Electronic devices, Semiconductor drives, Energy storage systems( Battery, Fuel Cell, Super Capacitor etc).											
Course Obj	ectives:										
1.	To unders	To understand Importance of Hybrid Electric Vehicles									
2.	To Know the various drive-train topologies										
3.	. To Learn the operation and configurations of DC & AC Drives										
4.	To Know t	the impor	tance of va	irious Ener	gy storage	systems a	nd Energy				
	managem	ient strate	gies								
5.	To provide	e knowledg	e about su	ipervisory	v control o	of EVs					
Course Out	comes: Aft	ter success	ful comple	etion of the	e course, th	ne student	will be abl	e to:			
CO 1	Understa	nd the mo	dels to de	scribe hyb	rid vehicle	s and their	r performa	nce (BL-2)			
CO 2	Classify v	arious hy	brid drive	e-train top	ologies(B	L-1)					
CO 3	Understa	nd the var	ious confi	igurations	of DC & A	C Motor o	drives. (BI	L-2)			
CO 4	Understa	nd the dif	ferent pos	sible ways	of energy	storage a	nd differe	nt strategies			
	related to	Energy m	anagemen	t strategies	. (BL-2)						
CO 5	Understa	nd the mo	de of opera	ation and o	control Arc	hitecture.	(BL-2)				

CO-PO Mapping														
СО		PO										PSO		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2						2						2	3
CO2	2												2	2
CO3	3		1										1	2
CO4	2												1	
CO5	2												1	
					1: Lo	w, 2-N	ledium	i, 3- Hi	gh					

COURSE CONTENT								
MODULE - 1         INTRODUCTION TO ELECTRIC VEHICLES         8 Hours								
Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization,								
transmission charac	cteristics, History of hybrid and electric vehicles, social	and environmental						
importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.								
At the end of the Mo	dule 1, students will be able to:							
1. Understar	nd the importance of Electric vehicles over Conventional	vehicles. (BL-2)						
2. Understa	nd the social and environmental importance of hybrid a	nd electric vehicles.						
(BL-2)	(BL-2)							
3Understa	nd the impact of modern drive-trains on energy supplies.	(BL-2)						



M	ODULE -2	Hybrid Electric Drive-trains	8 Hours
Basic	concept of h	ybrid traction, introduction to various hybrid drive-tra	ain topologies,
powe	r flow contr	ol in hybrid drive-train topologies, fuel efficiency analy	sis
At the	end of the Mo	odule 2, students will be able to:	
1.	Compare v	arious hybrid drive-train topologies. (BL-1)	
2.	Explain pov	ver flow control in hybrid drive-train topologies. (BL-2)	
3.	Understan	d the Fuel efficiency analysis. (BL-2)	
м	ODULE-3	Electric Propulsion unit	8 Hours
Config Motor	guration and r drives, Swi	l control of DC Motor drives, Induction Motor drives, Pe tch Reluctance Motor drives	ermanent Magnet
At the	end of the Mo	odule 3, students will be able to:	
1.	Understand	d Configuration of DC Motor drives. (BL-2)	
2.	Understand	d Configuration of Induction Motor drives. (BL-2)	
3.	Understand	d Configuration of SRM drives. (BL-2)	
М	ODULE-4	Energy Storage Systems and Energy Management	10 Hours
Cell, S Introc classi	Super Capaci duction to en fication of d	tor based energy storage and its analysis. hergy management strategies used in hybrid and electr ifferent energy management strategies.	ic vehicles,
At the		dule 4, students will be able to:	
1. 2	Understand Know the F	the requirements of Energy storage systems. (BL-2)	
2.	Know the E	dillery based Ellergy storage systems. (BL-1)	2)
3.		the importance of energy management strategies. (BL	-2) 10.000
	ODULE-5	Hybrid Vehicle Control Strategy	10 Hours
HEV s brake	supervisory mode - rege	control - Selection of modes - power spilt mode - para eneration mode - series parallel mode.	allel mode - engin
At the	end of the Mo	odule 6, students will be able to:	
1.	Know the s	peed control techniques of HEV. (BL-1)	
2.	Distinguish	the different modes of operation of control strategies. (B	BL-2)
		Tota	al hours: 44 hours
L			I

## Term work:

Term work contains minimum two group assignments followed by seminars and quiz's

## Content beyond syllabus:

- **1.** Hybridization of different energy storage devices
- 2. Mechanics of Electric Vehicles

Self-Study:

SNO	Торіс	СО	Reference
1	Introduction to	CO1	https://nptel.ac.in/content/storage2/courses/108103009/



	Electric Vehicles		download/M1.pdf
			https://www.youtube.com/watch?v=KOLBGKMo3zQ
2	Hybrid Electric	CO2	https://www.youtube.com/watch?v=oydKVcJqPQ0
	Drive-trains		https://nptel.ac.in/content/storage2/courses/108103009/
			download/M3.pdf
3	DC & AC Motor	CO3	https://www.youtube.com/watch?v=1AT1yuQ9awM&list=
	drives		PLFW6IRTa1g83sIfVY1p1xGqPGYUmXyahx
4	Energy Storage	CO4	https://www.youtube.com/watch?v=j7RaL_XKywk
	Systems & Energy		https://nptel.ac.in/content/storage2/courses/108103009/
	Management		download/M10.pdf
	Strategies		
5	Hybrid Vehicle	CO5	https://nptel.ac.in/content/storage2/courses/108103009/
	Control Strategy		download/M12.pdf

1. C. Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.

2. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.

3. Electric Vehicle Technology Explained-James Larminie, John Lowry-John Wiley & Sons Ltd,-2003

4. Electric & Hybrid Vehicles-Design Fundamentals-Iqbal Hussain, Second Edition, CRCPress, 2011

#### Reference Book(s):

1. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.

2. T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016.

3. Iqbal Husain, "Electric and Hybrid Electric Vehicles", CRC Press, 2011.

4. Wei Liu, "Hybrid Electric Vehicle System Modeling and Control", Second Edition, WILEY, 2017

#### Online Resources / Web References:

1. https://b-ok.asia/book/1226776/eceb4b

2. <u>https://b-ok.asia/book/3357286/21e776</u>

3.<u>http://ceb.ac.in/knowledge-center/E-</u>

BOOKS/Modern%20Electric,%20Hybrid%20Electric%20&%20Fuel%20Cell%20Vehicles%20-

%20Mehrdad%20Ehsani.pdf

4. https://b-ok.asia/book/3516646/6fe038

5. https://nptel.ac.in/courses/108/103/108103009/

6. https://www.youtube.com/watch?v=V004WUdpHeA&list=PLIYm0-AHZdZRLYSylFinxkspWmcgNvbtl

7. <u>https://www.youtube.com/watch?v=11e_d3Q9jEc</u>



NARAYANA ENGINEERING COLLEGE:GUDUR														
21EE4023		AUT	OMOTIVE	ELECTRICA	ENGINEER	ING		R2021						
	Н	lours / Wee	ek	Total	Credit	Max Marks								
	L	Т	Р	hrs	С	CIE	AEE	TOTAL						
	3	0	0	48	3	40	60	100						
Pre-requis	Pre-requisite: Nil													
Course Ob	jectives:													
1.	To under	rstand the	various t	ypes of Ba	atteries ar	id their ra	tings							
2.	To understand the starting condition and its behavior													
3.	. To understand the various charging systems in Automobiles													
4.	<ol> <li>To learn different Lighting systems in Automobiles</li> </ol>													
5.	To learn	electronic	engine m	anagemer	t system	in Automo	biles							
6.	To under	rstand the	various e	electrical a	nd non el	ectrical se	ensors							
Course Ou	tcomes: Af	ter success	ful compl	etion of th	e course, t	ne student	will be ab	le to:						
CO 1	Compute	e the efficie	ncy of Batt	eries throu	gh various	test's								
CO 2	Underst	and the w	orking of a	different st	arter drive	units and	their mair	ntenance and						
	the conce	ept of vehi	cle chargin	ig system v	vith its aux	iliaries								
CO 3	Underst	and the da	zzling of h	ead light a	nd its preve	entive met	hods							
CO 4	Understa	and the ele	ectronic da	ashboard i	nstrument	s & onboa	rd diagno	stic system						
CO 5	Understa	and the val	rious sens	ors used i	n Automok	Understand the various sensors used in Automobiles								

CO-PO Mapping														
СО		РО										PSO		
	PO	PO	PO	PO	PO	PO	PO	РО	РО	РО	PO	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3		1				2						2	2
CO2	2	1	1											
CO3	2		1										1	
CO4	2	1	2										2	2
CO5	2	1	1										1	2
					1: Lo	w, 2-N	ledium	, 3- Hi	gh					

COURSE CONTENT							
MODULE – 1	10 Hours						
BATTERIES ACCESSORIES AND CHARGING SYSTEM							
Principle and construction of lead acid battery, characteristics of batter efficiency of batteries, various tests on batteries, maintenance and charge Generation of direct current, shunt generator characteristics, armature regulation, cutout. Voltage and current regulators, compensated voltage At the end of the Module 1, students will be able to:	ry, rating capacity and ng. reaction, third brush regulator, alternators.						
1. Explain the Principle and construction of lead acid battery							
<ol> <li>Identify the ratings of various Batteries</li> <li>Understand the importance of voltage and current regulators in charging system</li> </ol>							
MODULE -2	10 Hours						



#### STARTING SYSTEM

Condition at starting, behavior of starter during starting, series motor and its characteristics, principle and construction of starter motor, working of different starter drive units, care and maintenances of starter motor, starter switches.

At the end of the Module 2, students will be able to:

- 1. Understand the importance of starter
- 2. Understand the principle and construction of starter motor
- 3. Explain the various types of starter switches

MODULE-3	10 Hours

## LIGHTING

Lighting system: insulated and earth return system, details of head light and side light, LED lighting system, head light dazzling and preventive methods – Horn, wiper system and trafficator.

At the end of the Module 4, students will be able to:

1. Understand the arrangement of insulated and earth return system

**MODULE-4** 

2. Understand the working of wiper system and trafficator.

10 Hours

## FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

Current trends in automotive electronic engine management system, electromagnetic interference suppression, electromagnetic compatibility, electronic dashboard instruments, onboard diagnostic system, security and warning system.

At the end of the Module 5, students will be able to:

1. Understand the use of electronics in engine management system

**MODULE-5** 

- 2. Understand the concept of electromagnetic interference suppression
- 3. Understand the Automobile security and warning system

_

## SENSORS AND ACTUATORS

Types of sensors: sensor for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant temperature, exhaust temperature, air mass flow for engine application. Solenoids, stepper motors, relay.

At the end of the Module 6, students will be able to:

- 1. Identify various types of sensors in Automobiles
- 2. Explain about air mass flow in engine application

Total hours: 50 hours

## Term work:

Individual Assignments, followed by Quiz's

## Content beyond syllabus:

**1.** Advanced charging system in Automobiles



Self-Study:	
-------------	--

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Construction of	CO1	https://circuitglobe.com/lead-acid-battery.html
	lead acid battery		https://www.howacarworks.com/basics/how-the-
			charging-system-works
2	Principle and	CO2	https://www.samarins.com/glossary/starter.html
	construction of		
	starter motor		
3	Lighting system	CO3	https://what-when-how.com/automobile/lighting-circuit-
			automobile/
4	Automotive	CO4	https://www.ukessays.com/essays/engineering/electronic
	electronic engine		-control-unit-and-engine-management-system-
	management		engineering-essay.php
	system		
5	Types of sensors	CO5	https://www.my-
			cardictionary.com/electronics/sensors.html

## Text Book(s):

1. Tom Weather Jr and Cland C.Hunter, *"Automotive Computers and Control system"*, Prentice Hall Inc., New Jersey.

2. A. Bonnick, "Automotive Computer Controlled Systems", 2011.

 Young A. P & Griffiths L, "Automobile Electrical and Electronic Equipments" English Languages Book Society & New Press, 1990.

#### Reference Book(s):

1. Santini Al, "Automotive Electricity and Electronics", Cengage Learning, 2012.

2. Tom Denton, "Automotive Electrical and Electronic System", SAE International, 2004.

3. William B. Ribbens, "Understanding Automotive Electronics", 6th Edition, Newnes, 2003.

4. BOSCH, *"Automotive Handbook"*, 8th Edition, BENTLEY ROBERT Incorporated, 2011.

5. Norm Chapman, "Principles of Electricity and electronics for the Automotive Technician", Delmar Cengage Learning, 2008.

6. Judge A.W, "Modern Electrical Equipment of Automobiles", Chapman & Hall, London, 1992.

#### Online Resources:

1. https://b-ok.asia/book/526451/802478

2. https://b-ok.asia/book/2161298/3ad7b5

## Web Resources:

1. <u>https://www.youtube.com/watch?v=hs7bABMtOMI&list=PLyqSpQzTE6M9G2SNxKfsVEjcM9MIJau4F</u> 2. <u>https://www.youtube.com/watch?v=HHgPBMMZ26w</u>



	NARAYANA ENGINEERING COLLEGE:GUDUR							
21EE4004	REA004RENEWABLE ENERGY CONVERSION SYSTEMSR2021							
	Hours / Week			Total	Credit		rks	
	L	Т	Р	hrs	С	CIE	RECS	TOTAL
	3	0	0	48	3	40	60	100
Pre-requi	site: Nill							
Course O	bjectives:							
1.	To create	awarenes	s about va	rious Elec	tric Energy	Conversion Conversion	ion System	IS.
2.	Learn the	fundamer	ntal concep	ots about s	olar energ	y conversi	on systems	s and
	devices	devices						
3.	To understand the solar thermal conversion systems for high temperature							
	applications.							
4.	To learn Thermal and Bio-energy conversion systems							
5.	To Understand the various technologies that are used in WECS							
6.	To Understand the Fuel cell technology							
Course O	utcomes:	After suce	cessful co	ompletion	of the cou	irse, the st	tudent will	l be able to:
CO 1	Understa	nd various	Electric E	Energy Co	nversion S	ystems (B	TL-2)	
CO 2	Analyze	the solar th	nermal cor	nversion s	ystem (Als	o for high	temperatu	re
	applications) (BTL-4)							
CO 3	Analyze	Analyze the Photovoltaic & Bio-Energy Conversion Systems (BTL-4)						
CO 4	Illustrate	the existir	ng Wind E	nergy Cor	version Sy	/stem (BT	L-2)	
CO 5	Extend t	he knowle	edge abou	t working	principle	of variou	s Fuel cel	l technology
	(BTL-2)		(BTL-2)					

CO-PO Mapping														
СО		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	1										1	
CO2	2	2											1	2
CO3	2	1											1	1
CO4	2	1	1											2
CO5	1	1	1										1	2
	1: Low, 2-Medium, 3- High													

COURSE (	CONTENT
----------	---------

**ELECTRIC ENERGY CONVERSION SYSTEM** 

12 Hrs

Generation of electricity using different sources, Transmission and distribution losses, AC to DC and DC to AC conversions, Electric motors: Types, losses, efficiency, Lightning systems, Diesel generating systems.

At the end of the Module 1, students will be able to:

1. Understand various Electric Energy Conversion Systems.

2. Understand losses, efficiency related to Electric Energy Conversion Systems.

MODULE -2	SOLAR THERMAL CONVERSION SYSTEM	12 Hrs
Relevance of so	olar thermal power generation; Components of solar thermal po	ower plant,
Design and per	formance, characteristics of different solar concentrator types s	suitable for
thermal power g	generation	

Narayana Engineering College :: Gudur (Autonomous)

MODULE – 1



**HIGH TEMPERATURE APPLICATIONS:** Types of solar thermal conversion system used in high temperature application, Tracking of solar concentrators; performance characterization of solar concentrators both line focus and point focus, Comparative analysis of the both mode focus system.

At the end of the Module 2, students will be able to:

- 1. Describe the existing solar Energy Conversion System
- 2. understand characteristics of different solar concentrators
- 3. Evaluate the solar thermal conversion systems for high temperature applications.
- 4. understand the working of various solar concentrators

MODULE-3	THERMAL ENERGY CONVERSION & BIO-ENERGY					
	CONVERSION SYSTEMS					

Thermo-electric generator, Concepts and design considerations of MHD generators, Cycle analysis of MHD systems, Thermionic power conversion and plasma diodes, Thermo chemical Conversion. Bio-energy conversion, bio methanation technology.

At the end of the Module 4, students will be able to:

1. Understand the Photovoltaic & Bio-Energy Conversion Systems

2. Analyze Thermo chemical and Bio-energy conversion

<b>MODULE-4</b>	WIND ENERGY CONVERSION SYSTEM (WECS)	8 Hrs
-----------------	--------------------------------------	-------

Rotor Selection, Annual Energy Output, HAWT, VAWT, Rotor Design Considerations-Number of Blades, Blade Profile -2/3 Blades and Teetering, Coning- Upwind/Downwind, Power Regulation, Yaw System- Tower, Synchronous and Asynchronous Generators and Loads, Integration of Wind Energy Converters to Electrical Networks, Inverters.

At the end of the Module 5, students will be able to:

- 1. Describe the existing Wind Energy Conversion System.
- 2. understand the Rotor Design Considerations

<b>MODULE-5</b>
-----------------

# FUEL CELL TECHNOLOGY

8 Hrs

Overview of fuel cells, Fuel cell thermodynamics, fuel cell efficiency, Fuel cell characterization, Fuel cell modelling and system integration, Balance of plant, Hydrogen production from renewable sources and storage, life cycle analysis of fuel cells

- At the end of the Module 6, students will be able to:
  - 1. Understand the Fuel cell technology
  - 2. Understand the Fuel cell modelling and system integration

Total hours: 48 hours

## Term work:

Individual assignment, followed by Quiz and End semester examinations

## Content beyond syllabus:

Advance energy conversion process

## Self-Study:

SNO	Торіс	CO	Reference
1	Electric Energy	CO1	https://www.britannica.com/technology/energy-conversio
	Conversion		
	Systems		



2	solar energy	CO2	https://www.appropedia.org/Solar_energy_conversion_sy	stem
	conversion		https://www.sciencedirect.com/topics/engineering/therma	1-
	systems		solar-energy-system-technology	
3	Thermal and	CO3	http://www.fao.org/3/T1804E/t1804e06.htm	
	Bio-energy			
	conversion			
	systems			
4	Wind Energy	CO4	https://www.appropedia.org/Wind_energy_conversion_sy	stem
	Conversion			
	Systems			
5	Fuel cell	CO5	https://www.hydrogenics.com/technology-	
	technology		resources/hydrogen-technology/fuel-cells/	

- 1. S. S. L. Chang, Energy Conversion, Prentice Hall, 1963
- 2. R. J. Rosa, Magneto hydrodynamic Energy Conversion, Springer, 1987.
- 3. V. S. Bagotsky, Fuel Cell Problems and Solutions, John Wiley & Sons, 2009

## **Reference Book(s):**

- 1. Kettani, M.A., Direct energy conversion, Addison-Wesley, Reading, Mass, 1970
- 2. Hand book Batteries and Fuel Cells. Linden, McGraw Hill, 1984

## **Online Resources:**

- 1. <u>https://archive.org/details/energyconversion00chan</u>
- 2. https://www.trine.edu/books/documents/de_text1.0.0.pdf

# Web Resources:

- 1. <u>https://www.youtube.com/watch?v=mpHZWYpKDJg</u>
- 2. <u>https://www.youtube.com/watch?v=GExTwRNkQBg</u>





	NARAYANA ENGINEERING COLLEGE:GUDUR										
21EE4009		SOLAR	AND FUE	L CELL E	CELL ENERGY SYSTEMS R202						
	Н	lours / Wee	k	Total	Credit		Max Mar	ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
	3	0	0	48	3	40	60	100			
Pre-requis	Pre-requisite: Nil										
Course O	Course Objectives:										
1. To make students understand the fundamental theory governing the photovoltaic											
devise and make them carry out preliminary system design.											
2. To learn the fundamental knowledge about various fuel cell technologies.											
<b>Course Outcomes</b> : After successful completion of the course, the student will be able to:								be able to:			
CO 1	Understa	Understand the need of radiation of sun and discuss the various performance									
	characteristics of solar radiation.(BL-2)										
CO 2	Discuss the photovoltaic effect, PV Cell efficiency and its limits along with the										
	concepts of fabrication technology for solar cell (BL-2)										
CO 3	Predict the performance of solar photovoltaic device and analyze its performance.										
	(BL-2)	(BL-2)									
CO 4	Carry out the application of photovoltaic system as power system. (BL-3)										
CO 5	Analyze defend ap	the perform propriate fu	mance of t iel cell tech	fuel cells nology for	inder differ a given app	ent operati blication. (E	ng conditio BL-4)	ons and also			

	CO-PO Mapping													
СО		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1			2	2						2	1
CO2	3	3	3			2	2				2		3	2
CO3	2	2	1			2	2				2		2	2
<b>CO4</b>	2	2				2	2	2			2		3	3
CO5	2	3	2			2	2				2		2	1
	1: Low, 2-Medium, 3- High													

COURSE CONTENT									
MODULE - 1Solar Radiation08 Hours									
Sun as Energy Source, Solar Radiation at The Earth's Surface, Solar Radiation Geometry, Solar Time and									
Equation of Time, Sun Earth angles, Sun path diagram, Sunshine hours, Measurement of Solar Diffuse,									
Global and Direct Solar Radiation, Equipments, Estimation of Solar radiation on horizontal and tilted									
Surfaces, Global Solar r	adiation data, Indian Solar Radiation data analysis								
At the end of the Mod	ule 1, students will be able to:								
1.Understand t	1.Understand the need of radiation of sun (BL-2)								
2. Discuss the various performance characteristics of solar radiation.(BL-2)									
MODULE -2Solar Cells and its Fabrication07 Hours									



#### Solar Cells

Conversion of Solar energy into Electricity - Photovoltaic Effect, Equivalent Circuit of the Solar Cell, Analysis of PV Cells: Dark and illumination characteristics, Figure of merits of solar cell, Efficiency limits, Variation of efficiency with band-gap and temperature, Efficiency measurements, High efficiency cells, Recent developments in Solar Cells, Role of nano-technology in Solar cells

#### Fabrication Technology for Solar Cells

High efficiency multi-junction solar cell, Quantum well solar cell, Technology for the fabrication of thin film cells, Optical concentration, Effect of temperature on Cell performance, Thermo photovoltaic effect At the end of the Module 2, students will be able to:

1. Discuss the photovoltaic effect, PV Cell efficiency and its limits (BL-2)

2. Discuss the concepts of fabrication technology for solar cell (BL-2)							
MODULE-3	Solar Photovoltaic System	10 Hours					

## Solar Photovoltaic System Design

Solar cell array system analysis and performance prediction, Shadow analysis: Reliability, Solar cell array design concepts, PV system design, Design process and optimization: Detailed array design, Voltage regulation, Maximum tracking, Quick sizing method, Array protection.

## Solar Photo Voltaic System Testing

Sun Simulator, Testing and performance assessment of Solar PV generator, Electronic Control and Regulation, Power Conditioning, Converters and inverter, Concentrating system, System design and configuration

At the end of the Module 3, students will be able to:

1. Predict the performance of solar photovoltaic device and analyze its performance. (BL-2)

MODULE-4	SPV Power Systems	12 Hours

Centralized and decentralized SPV systems, Stand alone, hybrid and, grid connected system, System installation, Operation and Maintenance, Application of PV for lighting, Water pumping. Refrigeration, Telecommunication, Cathodic Protection, Solar PV Power Plant-Status-Case Studies, Hybridization Engineering, Hybrid systems, Grid integration. Building Integrated PV Systems, PV market analysis and Economics of SPV systems.

At the end of the Module 4, students will be able to:

1. Carry out the application of photovoltaic system as power system. (BL-3)

<b>MODULE-5</b>	FUEL CELLS	12 Hours					
History, Working principle of fuel cells, Fuel cell thermodynamics, fuel cell electrochemistry - Nernst							

equation, Electrochemical kinetics, Butler-Volmer equation, performance evaluation of fuel cells, Types of Fuel Cells: AFC, PAFC, SOFC, MCFC, DMFC, relative merits and demerits.

**Fuel cell characterization** In-situ and ex-situ characterization techniques, I-V curve, frequency response analyses; Fuel cell system integration

**Application of Fuel Cells** Fuel Cell usage for domestic power systems, large scale power generation, Automobile, environmental analysis. Future trends in fuel cells, portable fuel cells, laptops, mobiles, submarines.

At the end of the Module 6, students will be able to:

1. Analyze the performance of fuel cells under different operating conditions. (BL-4)

2. Select and defend appropriate fuel cell technology for a given application. (BL-4)

Total hours: 48 hours

1. Field trip

# Content beyond syllabus:

- 1. Introduction of hydrogen energy systems
- 2. Hydrogen production processes
- 3. Hydrogen storage and safety



## Self-Study:

Contents to promote self-Learning:

SNO	MODULE	Reference
1	Indian Solar Radiation data analysis	https://www.nrel.gov/docs/fy21osti/78025.pdf
2	Role of nano- technology in Solar cells	https://www.intechopen.com/chapters/73145
3	Converters and inverter in solar energy	https://www.energy.gov/eere/solar/solar-integration- inverters-and-grid-services-basics
4	Economics of SPV systems	https://extensionpublications.unl.edu/assets/pdf/g2182. pdf
5	Types of Fuel cells with relative merits and demerits	https://www.energy.gov/eere/fuelcells/types-fuel-cells

## Text Book(s):

1. Fundamentals of Solar Cells: PV Solar Energy Conversion by AL Fahrenbruch and RH Bube, Academic Press, New York.

2. Solar Photovoltaics. Fundamental Technologies and Application by Chetan Singh Solanki, PHI Publicaton.

3. Principles of Fuel Cells by Xianguo Li, Taylor & Francis.

4. Fuel cell Systems Explained by James Larminie and Andrew Dicks, John Wiley & Sons, Inc.

5. Fuel Cells: From Fundamentals to Applications by S Srinivasan, Springer.

#### **Reference Book(s):**

- 1. Principles of Solar Engineering by F Kreith and JF Kreider, McGraw-Hill.
- 2. Fuel Cell Fundamentals by O'Hayre, SW Cha, W Colella and FB Prinz, Wiley.
- 3. Fuel Cell Science and Technology by Basu, S. (Ed) Springer, N.Y.

#### **Online Resources:**

- 1. https://www.nrel.gov/docs/fy21osti/78025.pdf
- 2. https://www.intechopen.com/chapters/73145
- 3. https://www.energy.gov/eere/solar/solar-integration-inverters-and-grid-services-basics
- 4. https://extensionpublications.unl.edu/assets/pdf/g2182.pdf

5. https://www.energy.gov/eere/fuelcells/types-fuel-cells

## Web References:

- 1. https://www.youtube.com/watch?v=--GfdbavEk8
- 2. https://www.youtube.com/watch?v=qFnAIxyPXuQ
- 3. https://www.youtube.com/watch?v=px239v5o6xU
- 4. https://www.youtube.com/watch?v=pH03Y5KwpjU
- 5. https://www.youtube.com/watch?v=60eN9VDFLig



	NARAYANA ENGINEERING COLLEGE:GUDUR									
21EE4014	WIND & BIOMASS ENERGY SYSTEM R2									
	H	Iours / Wee	k	Total	Credit		ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requis	ite: Nil									
Course Objectives:										
1. To acquire the knowledge on wind power generation										
2. To Understand the concept of wind turbine design										
3. To Discuss the Current trends in worldwide applications of wind power										
4. T	4. To Understand the various methods Bio- Chemical Conversion systems									
5. T	O Discuss	the various	s applicati	ons of bio	mass		•			
Course O	utcomes:	After succ	cessful co	ompletion	of the cou	urse, the s	tudent wil	l be able to:		
CO 1	Understa	nd the pres	sent wind	energy sce	enario (BL	-2)				
CO 2	Explain the various wind energy technologies. (BL-3)									
CO 3	Identify various applications of wind energy .(BL-2)									
CO 4	Explain the various biomass conversion technologies and testing of performance of									
	biogas. (B	L-2)								
CO 5	Understar	nd the Bio-E	Energy Syst	tems with I	Efficient Ap	plications.	(BL-2)			

	CO-PO Mapping													
СО		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2									2	1
CO2	3	1	1	2									3	2
CO3	3	3	2	1									2	2
CO4	2	2	3	2									3	3
CO5	1	2	1		2								2	1
					l: Lov	v, 2-M	lediun	n, 3- H	ligh					

COURSE	CONTENT
--------	---------

MODULE – 1	Wind Power Generation	08 Hours							
Introduction – Basic p	ntroduction – Basic principles of wind energy conversion power in the wind-Forces on blades and								
hrust on turbines – Wind energy conversion – site selection Considerations -Basic components of									
WECS – Classification- Advantages and disadvantages – Power, torque and speed characteristics.									
At the end of the Module 1, students will be able to:									
1.Understand t	he need of wind energy (BL-2)								
2. Explain the	various performance characteristics of wind energy.(H	BL-1)							
3. Understand	the Basic principles of wind energy conversion system	n (BL-2)							
MODULE -2	WECS design	07 Hours							
Design of wind turbin	e :Wind turbine design considerations; Methodology	; Theoretical simulation							
of wind turbine charac	eteristics; Test methods.								
Aerodynamic design p	Aerodynamic design principles; Aerodynamic theories; Axial momentum, blade element and								
combine theory; Rotor	characteristics; Maximum power coefficient; Prandl	t's tip loss Correction.							



At the end of the Module 2, students will be able to: 1. Discuss Wind turbine design considerations & characteristics (BL-2)

2. Discuss the concepts of Aerodynamic theories (BL-2)

3.Understand the concept of Maximum power coefficient (BL-2)



#### Term work:

1. Field trip

#### **Content beyond syllabus:**

1. Betz limit & Wind resource assessment

#### Self-Study:

#### Contents to promote self-Learning:

SNO	MODULE	Reference
1	Basic components of	https://www.youtube.com/watch?v=uUzqfckAlbg
	WECS	
2	Prandlt's tip loss	https://www.youtube.com/watch?v=F9J2BdprXOQ
	Correction	
3	Wind energy	https://www.youtube.com/watch?v=-N-QJkY1GEM
	measurements	
4	Biomass conversion	https://www.youtube.com/watch?v=H1hrkCdto
	technologies	https://www.youtube.com/watch?v=RrBOqjCtkk0
	Design of Biomass	
	Gasifiers	
5	Night Soil and	https://www.youtube.com/watch?v=ehNEtJtaFR8
	Municipal Waste	
	based Bio-gas plants	

#### Text Book(s):

1. S.N.Bhadra, D.Kastha, S.Banerjee, "wind electrical systems" Oxford University Press

2. S.Rao & B.B.Parulekar, "Energy Technology", 4th edition, Khanna publishers, 2005.

3. "Energy conversion systems" by Rakosh das Begamudre, New age international publishers, New Delhi - 2000.

## **Reference Book(s):**

1. "Renewable Energy sources & Conversion Technology" by N.K.Bansal, Manfred Kleemann, Michael Meliss. Tata Mcgraw Hill Publishers.

2. "The Electrical Energy Storage" by IEC Market Strategy Board.

3. Jim Eyer, Garth Corey, "Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide, Report", Press, Feb 2010.

#### **Online Resources:**

1. https://www.lathamathavan.edu.in/lmgi/antiragging/WECS-%21EEE%20new.pdf

2. https://www.lathamathavan.edu.in/lmgi/antiragging/WECS-%21EEE%20new.pdf

3.https://engineering.purdue.edu/~dionysis/EE452/Lab9/Wind_Energy_Conversion.pdf

4. https://energystorage.org/why-energy-storage/technologies/

5. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118029008

#### Web References:

1. https://www.youtube.com/watch?v=mh51mAUexK4

2. https://www.youtube.com/watch?v=GExTwRNkQBg

3. https://www.youtube.com/watch?v=4a4XGu1mR5E

4. https://www.youtube.com/watch?v=xzY3CK43C98

5. https://www.youtube.com/watch?v=_OQtT4yhhWc



	NAR	AYANA	ENGIN	EERIN	G COLL	EGE::G	UDUR				
21EE4019		UTILI	ZATION C	OF ELECTRICAL ENERGY R2021							
	Hours / Week		Total	Credit		ks					
	L T P		hrs	С	CIE	UCE	TOTAL				
	3	0	0	48	3	40	60	100			
Pre-requisite: Nil											
Course Objectives:											
1	1. To Summarize various electric drives and traction motors with applications										
2	2. To Under	To Understand the concepts of Mechanics of Train movement and associated									
	calculatio	calculations									
3	3. To Expla	To Explain the laws of illumination and their application for various lighting									
	schemes	schemes									
4	I. To under	stand the o	different m	ethods of	electric he	ating and o	electric we	lding			
5	5. To identi	fy how to	utilize the	solar radi	ation into e	lectrical e	nergy for c	lifferent			
	application	ons and to	understan	d the basic	principles	of wind e	energy con	version			
Course O	<b>Dutcomes</b> : At	ter success	sful compl	etion of th	e course, th	ne student	will be able	e to:			
CO 1	Utilize th	e suitable	electric dr	ives for d	fferent app	olications(	BL=3)				
CO 2	Analyze	the Speed	I-Time Cu	rves of Di	fferent Serv	vices(BL=	:4)				
CO 3	Identify t	he energy	saving ba	sed on Illu	mination s	ystem (BI	L=3)				
CO 4	Understa	nd the u	tilization	of electr	rical energ	gy for h	eating an	d welding			
	purposes	(BL=2)									
CO 5	Illustrate	the eff	ective us	age of	solar and	wind e	energy fo	or electrical			
	application	ons(BL=2	)				-				

	CO-PO Mapping													
СО		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2												1	3
CO2	3	2												3
CO3	3	2		2									2	2
CO4	2			1	1								1	2
CO5	2	2	1				2						1	3
					1: Lov	w, 2-M	ledium	, 3- Hi	igh					

## COURSE CONTENT ELECTRIC DRIVES AND TRACTION

12 Hrs

Fundamentals of electric drive - choice of an electric motor - application of motors for particular services traction generator set, traction motors, power transformers - characteristic features of traction motor - systems of railway electrification - electric braking - train movement and energy consumption - traction motor control - track equipment and collection gear At the end of the Module 1, students will be able to:

1. Select the various Electric drives and Traction motors(BL=1)

2.Understand the types of railway electrification and track equipment(BL=2)

3.Explain the various electrical braking methods(BL=2)

-		
MODULE -2	MECHANICS OF ELECTRIC TRACTION	12 Hrs
Mechanics of Train	Movement. Speed-Time Curves of Different Services	- Trapezoidal and
Quadrilateral Speed-7	Time Curves – Numerical Problems. Calculations of Trac	ctive Effort, Power,
Specific Energy Cons	umption, Adhesive Weight and Coefficient of Adhesion	

MODULE – 1



At the end of the Module 2, students will be able to:         1.       Understand the Speed-Time Curves of Different Services(BL=2)         2.       Explain the mechanics of train movement(BL=2)         3.       Understand the factors effecting Specific Energy Consumption(BL=2)         MODULE-3       ILLUMINATION         08 Hrs         Introduction - definition and meaning of terms used in illumination engineering - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapor lamps, fluorescent lamps –design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting – UPS- energy saving lamps, LED – working principle of air conditioning system         At the end of the Module 3, students will be able to:         1.       Explain the various light sources (BL=2)         2.       Understand the various lighting schemes(BL=2)         3.       Illustrate the Energy conservation through LED usage(BL=2)
1. Understand the Speed-Time Curves of Different Services(BL=2)         2. Explain the mechanics of train movement(BL=2)         3. Understand the factors effecting Specific Energy Consumption(BL=2)         MODULE-3       ILLUMINATION         08 Hrs         Introduction - definition and meaning of terms used in illumination engineering - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapor lamps, fluorescent lamps -design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting - UPS- energy saving lamps, LED - working principle of air conditioning system         At the end of the Module 3, students will be able to:         1. Explain the various light sources (BL=2)         2. Understand the various lighting schemes(BL=2)         3. Illustrate the Energy conservation through LED usage(BL=2)
2. Explain the mechanics of train movement(BL=2)         3. Understand the factors effecting Specific Energy Consumption(BL=2)         MODULE-3       ILLUMINATION       08 Hrs         Introduction - definition and meaning of terms used in illumination engineering - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapor lamps, fluorescent lamps –design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting – UPS- energy saving lamps, LED – working principle of air conditioning system         At the end of the Module 3, students will be able to:       1. Explain the various light sources (BL=2)         2. Understand the various lighting schemes(BL=2)       3. Illustrate the Energy conservation through LED usage(BL=2)
3. Understand the factors effecting Specific Energy Consumption(BL=2)         MODULE-3       ILLUMINATION       08 Hrs         Introduction - definition and meaning of terms used in illumination engineering - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapor lamps, fluorescent lamps –design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting – UPS- energy saving lamps, LED – working principle of air conditioning system         At the end of the Module 3, students will be able to:       1. Explain the various light sources (BL=2)         2. Understand the various lighting schemes(BL=2)       3. Illustrate the Energy conservation through LED usage(BL=2)
MODULE-3ILLUMINATION08 HrsIntroduction - definition and meaning of terms used in illumination engineering - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapor lamps, fluorescent lamps -design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting - UPS- energy saving lamps, LED - working principle of air conditioning systemAt the end of the Module 3, students will be able to: 1. Explain the various light sources (BL=2) 2. Understand the various lighting schemes(BL=2) 3. Illustrate the Energy conservation through LED usage(BL=2)
Introduction - definition and meaning of terms used in illumination engineering - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapor lamps, fluorescent lamps -design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting - UPS- energy saving lamps, LED - working principle of air conditioning system At the end of the Module 3, students will be able to: 1. Explain the various light sources (BL=2) 2. Understand the various lighting schemes(BL=2) 3. Illustrate the Energy conservation through LED usage(BL=2)
<ul> <li>of light sources - incandescent lamps, sodium vapour lamps, mercury vapor lamps, fluorescent lamps –design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting – UPS- energy saving lamps, LED – working principle of air conditioning system</li> <li>At the end of the Module 3, students will be able to: <ol> <li>Explain the various light sources (BL=2)</li> <li>Understand the various lighting schemes(BL=2)</li> <li>Illustrate the Energy conservation through LED usage(BL=2)</li> </ol> </li> </ul>
<ul> <li>lamps –design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting – UPS- energy saving lamps, LED – working principle of air conditioning system</li> <li>At the end of the Module 3, students will be able to: <ol> <li>Explain the various light sources (BL=2)</li> <li>Understand the various lighting schemes(BL=2)</li> <li>Illustrate the Energy conservation through LED usage(BL=2)</li> </ol> </li> </ul>
<ul> <li>lighting schemes - flood lighting - street lighting - UPS- energy saving lamps, LED - working principle of air conditioning system</li> <li>At the end of the Module 3, students will be able to: <ol> <li>Explain the various light sources (BL=2)</li> <li>Understand the various lighting schemes(BL=2)</li> <li>Illustrate the Energy conservation through LED usage(BL=2)</li> </ol> </li> </ul>
principle of air conditioning system At the end of the Module 3, students will be able to: <ol> <li>Explain the various light sources (BL=2)</li> <li>Understand the various lighting schemes(BL=2)</li> <li>Illustrate the Energy conservation through LED usage(BL=2)</li> </ol>
<ul> <li>At the end of the Module 3, students will be able to: <ol> <li>Explain the various light sources (BL=2)</li> <li>Understand the various lighting schemes(BL=2)</li> <li>Illustrate the Energy conservation through LED usage(BL=2)</li> </ol> </li> </ul>
<ol> <li>Explain the various light sources (BL=2)</li> <li>Understand the various lighting schemes(BL=2)</li> <li>Illustrate the Energy conservation through LED usage(BL=2)</li> </ol>
<ol> <li>Understand the various lighting schemes(BL=2)</li> <li>Illustrate the Energy conservation through LED usage(BL=2)</li> </ol>
3. Illustrate the Energy conservation through LED usage(BL=2)
MODULE-4HEATING AND WELDING08 Hrs
Introduction - advantages of electric heating - modes of heat transfer - methods of electric
heating -resistance heating - arc furnaces - induction heating - dielectric heating - electric
welding - types -resistance welding - arc welding - power supply for arc welding - radiation
welding
At the end of the Module 4, students will be able to:
1. Understand the various electrical heating methods(BL=2)
2. List the advantages of electric heating(BL=1)
3. Explain the electrical welding methods(BL=2)
MODULE-5SOLAR & WIND ENERGY CONVERSION08 Hrs
SYSTEM
Solar Energy Conversion System: Introduction - solar constant – terrestrial solar radiation -
<b>Solar Energy Conversion System:</b> Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the
<b>Solar Energy Conversion System:</b> Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system -
<b>Solar Energy Conversion System:</b> Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and discharge solar radiation - plate collector - advantages and discharge solar radiation - plate collector - advantages and discharge solar radiation - plate collector - advantages and discharge solar radiation - plate collector - advantages and discharge solar radiation - plate collector - advantages and discharge solar radiation - plate collector - advantages and discharge solar radiation - plate collector - advantages and discharge solar - plate collector - advantages and discharge solar - plate collector - advantages - plate - pla
<b>Solar Energy Conversion System:</b> Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors
<b>Solar Energy Conversion System:</b> Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors Wind Energy Conversion System: Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) -
<b>Solar Energy Conversion System:</b> Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors <b>Wind Energy Conversion System:</b> Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the
<b>Solar Energy Conversion System:</b> Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors <b>Wind Energy Conversion System:</b> Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the blade
<ul> <li>Solar Energy Conversion System: Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors</li> <li>Wind Energy Conversion System: Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the blade</li> <li>At the end of the Module 5, students will be able to:</li> </ul>
<ul> <li>Solar Energy Conversion System: Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors</li> <li>Wind Energy Conversion System: Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the blade</li> <li>At the end of the Module 5, students will be able to:         <ol> <li>Understand the principles of the conversion of solar radiation into electrical</li> </ol> </li> </ul>
<ul> <li>Solar Energy Conversion System: Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors</li> <li>Wind Energy Conversion System: Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the blade</li> <li>At the end of the Module 5, students will be able to:         <ol> <li>Understand the principles of the conversion of solar radiation into electrical energy(BL=2)</li> </ol> </li> </ul>
<ul> <li>Solar Energy Conversion System: Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors</li> <li>Wind Energy Conversion System: Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the blade</li> <li>At the end of the Module 5, students will be able to:     <ul> <li>1. Understand the principles of the conversion of solar radiation into electrical energy(BL=2)</li> <li>2. Explain the various solar energy collectors(BL=2)</li> </ul> </li> </ul>
<ul> <li>Solar Energy Conversion System: Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors</li> <li>Wind Energy Conversion System: Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the blade</li> <li>At the end of the Module 5, students will be able to: <ol> <li>Understand the principles of the conversion of solar radiation into electrical energy(BL=2)</li> <li>Explain the various solar energy collectors(BL=2)</li> </ol> </li> </ul>
<ul> <li>Solar Energy Conversion System: Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors</li> <li>Wind Energy Conversion System: Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the blade</li> <li>At the end of the Module 5, students will be able to: <ol> <li>Understand the principles of the conversion of solar radiation into electrical energy(BL=2)</li> <li>Explain the various solar energy collectors(BL=2)</li> <li>Understand merits and demerits of concentrating collectors(BL=2)</li> </ol> </li> </ul>
<ul> <li>Solar Energy Conversion System: Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors</li> <li>Wind Energy Conversion System: Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the blade</li> <li>At the end of the Module 5, students will be able to: <ol> <li>Understand the principles of the conversion of solar radiation into electrical energy(BL=2)</li> <li>Explain the various solar energy collectors(BL=2)</li> <li>Understand the principles of wind energy conversion(BL=2)</li> <li>Illustrate the components of Wind Energy Conversion System(BL=2)</li> </ol> </li> </ul>
<ul> <li>Solar Energy Conversion System: Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors</li> <li>Wind Energy Conversion System: Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the blade</li> <li>At the end of the Module 5, students will be able to: <ol> <li>Understand the principles of the conversion of solar radiation into electrical energy(BL=2)</li> <li>Understand merits and demerits of concentrating collectors(BL=2)</li> <li>Understand the principles of wind energy conversion(BL=2)</li> <li>Illustrate the components of Wind Energy Conversion System(BL=2)</li> <li>Understand the aerodynamic forces acting on the blade(BL=2)</li> </ol> </li> </ul>
Solar Energy Conversion System: Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors Wind Energy Conversion System: Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the blade At the end of the Module 5, students will be able to: <ol> <li>Understand the principles of the conversion of solar radiation into electrical energy(BL=2)</li> <li>Explain the various solar energy collectors(BL=2)</li> <li>Understand merits and demerits of concentrating collectors(BL=2)</li> <li>Understand the principles of wind energy conversion(BL=2)</li> <li>Understand the aerodynamic forces acting on the blade(BL=2)</li> </ol> 6. Understand the aerodynamic forces acting on the blade(BL=2) 7. Total hours: 48 hours



## Term work:

1.Report on different DC drives used in electric traction system in India

2.Report on different AC drives used in electric traction system in India

3.study different Electrification systems in traction and submit the report

4. Field trip to electric locomotive limited , Tirupati and submit report on protection system used in electric locomotive

5. Field trip to electric locomotive limited ,Tirupati and submit report on energy consumption for different electric locomotives

6. Study the different lighting schemes & its line diagrams in Damodharam sanjeevaiah thermal power plant

7.Visit Nelcast industries, Gudur and submit the report on different types electric furnaces and its Rating

8. Visit Nelcast industries, Gudur and submit the report on protective schemes used for electric furnaces 9. Report on complete solar power utilization in India

10.Report on complete wind power utilization in India

#### Content beyond syllabus:

1. Energy Efficient Technologies in Electrical Systems

#### Self-Study:

Contents to promote self-Learning:

SN	Торіс	Reference
0		
1	Electric Drives	https://www.electronicshub.org/electric-traction-system/
	And Traction	
2	Mechanics Of	https://www.engineeringenotes.com/electrical-
	Electric Traction	engineering/electric-traction-electrical-engineering/train-
		movement-and-energy-consumption-electrical-engineering/37136
3	Illumination	https://nptel.ac.in/courses/108/105/108105060/
4	Heating And	https://www.electrical4u.com/electric-heating/
	Welding	twi-global.com/technical-knowledge/faqs/what-is-arc-
		welding
5	Solar & Wind	https://www.sciencedirect.com/topics/engineering/solar-collector
	Energy	https://www.awea.org/wind-101/basics-of-wind-energy
	Conversion	https://www.slideshare.net/BansiKansagara/et-wind
	System	

#### Text Book(s):

1. Utilization of Electric Energy, E. Openshaw Taylor and V. V. L. Rao, Universities Press, 2009.

2. N.V. Suryanarayana, "Utilisation of Electric Power", Wiley Eastern Limited, New Age International Limited, 1993

3. J.B.Gupta, "Utilisation Electric power and Electric Traction", S.K.Kataria and sons, 2000.

4. G.D.Rai," Non-Conventional Energy sources", Khanna publications Ltd., New Delhi 1997
5. D.P.Kothari, K.C.Singal, Rakesh Ranjan, "Renewable Energy Sources and Emerging

Technologies", PHI Learing Private Limited, 2013.



#### **Reference Book(s):**

1. Generation, distribution and utilization of electrical energy, C.L Wadhwa, Wiley Eastern Limited, 1993

2. R.K.Rajput, Utilisation of Electric Power, Laxmi publications private Limited.,2007

3. H.Partab, Art and Science of Utilisation of Electrical Energy", Dhanpat Rai and Co., New Delhi-2004.

**Online Resources:** 

1. <u>https://b-ok.asia/book/5441788/abf631</u>

2. https://b-ok.asia/book/2871150/836618

## Web Resources:

1.https://www.youtube.com/watch?v=fQrZMMWo1mA&list=PLbMVogVj5nJThs8VThC-

DA8CZYsmaQypX&index=1

2. <u>https://www.youtube.com/watch?v=5ZGh08q9K7E&list=PLEprwsbQ0B8ITTiaONpKN3Q-bEBJKTMIQ</u>

3. <u>https://www.youtube.com/watch?v=p3PkcLjNUhI</u>

4.<u>https://www.youtube.com/watch?v=TpvmJBeGUrg&list=PLyqSpQzTE6MKwjFQByBvRx464XpCgO</u> EC&index=2

5. <u>https://www.youtube.com/watch?v=GzMuLpsRY-8</u>

6. <u>https://www.youtube.com/watch?v=GExTwRNkQBg</u>



NARAYANA ENGINEERING COLLEGE::GUDUR										
21EE4024	E	ENERGY AUDIT & DEMAND SIDE MANAGEMENT     R2021       Hours / Wook     Total     Credit     Max Marks								
	H	Iours / Wee	k	Total	Credit		Max Mar	iks		
	L	Т	Р	hrs	С	CIE	EMS	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requisite: Nil										
Course Objectives:										
1. To learn about energy consumption and situation in India										
<b>2.</b> To	2. To learn about Energy Management.									
<b>3.</b> To	learn about	Energy M	leasuring 1	Instrumen	ts.					
<b>4.</b> To	understand	the Dema	nd Side M	lanagemer	nt (DSM).					
<b>5.</b> To	understand t	he cost effe	ctiveness f	or DSM.						
Course (	Dutcomes: A	fter success	sful comp	letion of th	ne course, t	he student	will be ab	le to:		
CO 1	Understand	the impo	rtance of	energy au	udit and th	ne basic i	deas of co	onduction an		
	energy audi	t $(BTL-2)$		0.						
CO 2	Analyze var	ious techni	ques of ene	ergy manag	ement and	conservatio	on (BTL-4)			
CO 3	Understand e	energy effic	eient metho	ds and pov	ver factor in	nprovemen	t technique	s (BTL-2)		
CO 4	Analyze de	mand side	managem	ent conce	pts througl	n case stud	ly (BTL-4	)		
CO 5	Understand [•]	various Cos	st effective	ness test fo	r demand si	ide manage	ment progr	ams (BTL-2)		

	CO-PO Mapping													
CO		PO PSO												
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1		1	2		2			2	1			1	1
CO2	1	2	1	1		1	1		2		1		2	1
CO3		1		1		1							2	1
CO4	1	2				1			1				1	1
CO5	1	1	2			1			1				1	1
					1:	Low, 2	2-Med	ium, 3	- High					

COURSE CONTENT										
MODULE – 1	ODULE - 1     Basic principles of Energy Audit     12 Hrs									
Energy audit- definitions, concept, types of audit, energy index, cost index, pie charts, Sankey diagrams, load profiles, Energy conservation schemes-Energy audit of industries-energy saving potential, energy audit of process industry, thermal power station, building energy audit										
At the end of the Module 1, students will be able to:										
1. Understand the concept of energy audit										
2. Understand the various Energy conservation schemes										
MODULE -2Energy management12 Hrs										
Energy management-I										
Principles of ene	Principles of energy management, organizing energy management program, initiating, planning,									
controlling, pron	noting, monitoring, reporting.									
Energy manage	ment-II									
Energy manger,	Qualities and functions, language, Questionnaire - check list for top ma	inagement								
At the end of the	Module 2, students will be able to:									
1. Conduct	energy management, energy audit and energy conservation measures.									
2. Understa	nd the basic principles of energy management									
3. Understa	nd the need of energy management									
4. Evaluate	energy audit results									
5. Illustrate	electrical load management techniques									
MODULE-3	ENERGY MANAGEMENT FOR LIGHTING AND ENERGY MOTORS	08 Hrs								



Good Lighting System Design and Practice, Lighting Control, Lighting Energy Audit Energy efficient motors, factors affecting efficiency, loss distribution, constructional details, characteristics - variable speed, variable duty cycle systems, RMS hp- voltage variation-voltage unbalance- over motoring- motor energy audit At the end of the Module 4, students will be able to: 1. understand the characteristics of energy efficient motors 2. Implement energy efficient methods and power factor improvement techniques **MODULE-4** INTRODUCTION TO DEMAND SIDE MANAGEMENT 08 Hrs Introduction to DSM, Concept of DSM, Benefits of DSM, Different Techniques of DSM – Time of Day Pricing, Multi-Utility Power Exchange Model, Time of Day Models for Planning. Load Management, Load Priority Technique, Peak Clipping, Peak Shifting, Valley Filling, Strategid Conservation, Energy Efficient Equipment. Management and Organization of Energy Conservation Awareness Programs. At the end of the Module 5, students will be able to: 1. Analyze demand side management concepts through case study 2. Understand the load management MODULE-5 ECONOMICS AND COST EFFECTIVENESS TESTS OF DSM 08 Hrs PROGRAMS Basic payback calculations, Depreciation, Net present value calculations. Taxes and Tax Credit Numerical Problems. Importance of evaluation, measurement and verification of demand side

management programs. Cost effectiveness test for demand side management programs - Ratepayer Impact Measure Test, Total Resource Cost, Participant Cost Test, Program Administrator Cost Test

At the end of the Module 6, students will be able to:

- 1. Analyze economic impacts of energy management and auditing
- 2. Understand various Cost effectiveness test for demand side management programs

Total hours: 48 hours

#### Term work:

Term work contains assignments, seminars and quiz

#### **Content beyond syllabus:**

1. Energy Instruments For Audit

#### Self-Study:

SNO	Торіс	СО	Reference
1	Energy	CO1	http://www.opexworks.com/KBase/Energy
	Audit		_Management/Energy_Audit_and
			_Management/Energy_Audit/Energy
			_Audit_Types_and_Methodology.htm
2	Overview of	CO2	https://beeindia.gov.in/sites/default/files/1Ch3.pdf
	energy		
	management		https://www.nrcan.gc.ca/sites/oee.nrcan.gc.ca
			/files/files/pdf/energy-audit-manual-and-tool.pdf
3	Energy	CO3	https://www.youtube.com/watch?v=T9Vmp3Qo8Mo
	management		
	for motors		
4	Demand	CO4	http://africa-toolkit.reeep.org/modules/Module14.pdf
	side		
	management		



**1.**Industrial Energy Management Systems, Arry C. White, Philip S. Schmidt, David R. Brown, Hemisphere Publishing Corporation, New York, 1994.

 Fundamentals of Energy Engineering - Albert Thumann, Prentice Hall Inc, Englewood Cliffs, New Jersey, 1984.

## **Reference Book(s):**

1) Energy management by W.R. Murphy & G. Mckay Butter worth, Heinemann publications.

2) Energy management by Paul o" Callaghan, Mc-graw Hill Book company-1/e,1998

3) Energy efficient electric motors by John C. Andreas, Marcel Dekker Inc Ltd-2/e, 1995

4) Energy management hand book by W.C.Turner, john Wiley and sons

5). Energy management and good lighting practice: fuel efficiency- booklet12-EEO

## **Online Resources:**

1. http://lab.fs.uni-lj.si/kes/erasmus/Energy%20Management%20Handbook.pdf

2. https://www.bsr.org/reports/bsr-energy-management-handbook.pdf

# Web Resources:

1. <u>https://freevideolectures.com/</u>

test of DSM

2.<u>https://www.academia.edu/33324894/Energy_Management_Handbook_7th_Ed_Doty_and_</u> Turner_Fairmont_Press_2009--03-Oct-2009-.pdf?auto=download

NECR B.TECH 21



NARAYANA ENGINEERING COLLEGE:GUDUR											
21EE4005		AI	<b>DVANCED</b>	POWER EI	LECTRONI	CS		R2021			
	Н	Hours / Week		Total	Credit		Max Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
	3	0	0	48	3	40	60	100			
Pre-requisite: Power Electronics											
Course Objectives:											
1.	1. To explain the concepts of power electronic switches										
2.	To demonstrate the applications and analysis of switches in DC-DC converter and										
	various single phase converters										
3.	3. To analyze the operation of single phase, three phase and multipulse converters										
4.	4. To analyze the power quality improvement techniques										
5.	To analy:	ze the allo	cations of F	FACTS devi	ces						
Cource Or	tcomoc. A	ftor augo	ecful com	plation of	the course	the stude	nt will bo	ablata			
course or	T 1 · 1				the course			able to:			
CO 1	Explain t	basic Conc	ept of Swi	tches and	their contr	olling proc	cess (B-2)				
<u> </u>	Demonst	rate the de	evice physi	ics, Applie	cation and	Analysis of	of Switche	es in DC-DC			
02	converter	s and Sing	gle Phase C	Converter	(B-2)						
	Analyze the operation Single Phase Converter, Three Phase Converter, Multip										
CO 3	Converter and Effect of Source Inductance and PWM Rectifiers (B-4)										
CO 4	Analyze	the Power	Quality In	nproveme	nt Techniq	ues in elec	ctrical system	ems (B-4)			
CO 5	Analyze	the applica	ations of F	ACTS De	vices in ele	ectrical sys	stem (B-4)				

	CO-PO Mapping													
		PO									PS	50		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2											2	3
CO2	3	2											2	3
CO3	3	2											2	3
CO4	3	2	2										2	2
CO5	3	2	2										2	3
	1: Low, 2-Medium, 3- High													

COURSE CONTENT									
MODULE – 1	Advanced Solid State Devices10 Hours								
MOSFETs, IGBT, GTO, IGCT etc. Power modules, intelligent power modules, gating circuits									
Thermal design, protection. Digital signal processors used in their control.									
At the end of the Module 1	At the end of the Module 1, students will be able to:								
<b>1.</b> Recall the basic	concepts of Switching characteristics (B	L-1)							
2. Understand the	controlling techniques of switches (BL-2	)							
MODULE -2	DC – DC and Single Phase converters	10 Hours							
Non-isolated dc-dc converters: Buck, boost, buck-boost, Cuk, SEPIC, Zeta in DCM and CCM									
Isolated dc-dc converters: Flyback, forward, Cuk, SEPIC, Zeta, half bridge, push-pull and bridge in									
DCM and CCM. Single-phase, single-stage converters (SSSSC), power factor correction at ac mains									
in these converters. Their	n these converters. Their application in SMPS, UPS, welding and lighting systems.								



At the end of the Module 2, students will be able to:

- 1. understand the concept of DC-DC conversion (BL-2)
- 2. explain the concept of single-pahse and single stage converters (BL-2)

MODULE-3AC-DC Converters10 HoursSingle-phase improved power quality ac-dc converters: Buck, boost, buck-boost, PWM V: (Voltage source converters), multilevel VSCs, PWM CSC (Current voltage source converter Three-phase improved power quality ac-dc converters: VSC, multilevel VSCs, multipulse VSC PWM CSC (Current voltage source converters). Multipulse ac-dc converters: Diode and thyrist based convertersAt the end of the Module 3, students will be able to: 1. Understand the concept of power quality (BL-2) 2. Apply the various converters (BL-4)MODULE-4Passive and Active Filters10 HoursPower quality mitigation devices: Passive filters, active filters, hybrid filters. DSTATCOM (Distribution static compensator), DVR (Dynamic voltage restorer) and UPQC (Universal pow quality conditioner).At the end of the Module 4, students will be able to: 1. Explain the concept of passive and active filters (BL-2) 2. Analyze different types of power quality mitigation devices (BL-4)MODULE-5FACTS Devices08 HoursFACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors). STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensato UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller). At the end of the Module 5, students will be able to: 1. Understand the concept of FACTS devices (BL-2) 2. Analyze the operation of different types of FACTS Devices (BL-4)MODULE-5FACTS Devices08 HoursFACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors). STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensato UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controlle										
Single-phase improved power quality ac-dc converters: Buck, boost, buck-boost, PWM V: (Voltage source converters), multilevel VSCs, PWM CSC (Current voltage source converter Three-phase improved power quality ac-dc converters: VSC, multilevel VSCs, multipulse VSG PWM CSC (Current voltage source converters). Multipulse ac-dc converters: Diode and thyrist based converters At the end of the Module 3, students will be able to: 1. Understand the concept of power quality (BL-2) 2. Apply the various converters to improve the power quality (BL-3) 3. Analyze the various ac-dc converters (BL-4) MODULE-4 Passive and Active Filters 10 Hours Power quality mitigation devices: Passive filters, active filters, hybrid filters. DSTATCOM (Distribution static compensator), DVR (Dynamic voltage restorer) and UPQC (Universal pow quality conditioner). At the end of the Module 4, students will be able to: 1. Explain the concept of passive and active filters (BL-2) 2. Analyze different types of power quality mitigation devices (BL-4) MODULE-5 FACTS Devices 08 Hours FACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors). STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensator) UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller). At the end of the Module 5, students will be able to: 1. Understand the concept of FACTS devices (BL-2) 2. Analyze the operation of different types of FACTS Devices (BL-2) 2. Analyze the operation of different types of FACTS Devices (BL-4) MODULE-5 FACTS devices (BL-2) 3. Analyze the operation of different types of FACTS Devices (BL-4) MODULE-5 FACTS devices (BL-2) 3. Analyze the operation of different types of FACTS Devices (BL-4) MODULE-5 FACTS devices (BL-4) MODULE-5 FACTS devices (BL-4) 48 Hours: 48 Hours:	MODULE-3	MODULE-3AC-DC Converters10 Hours								
(Voltage source converters), multilevel VSCs, PWM CSC (Current voltage source converter         Three-phase improved power quality ac-dc converters: VSC, multilevel VSCs, multipulse VSC         PWM CSC (Current voltage source converters). Multipulse ac-dc converters: Diode and thyrist         based converters         At the end of the Module 3, students will be able to:         1. Understand the concept of power quality (BL-2)         2. Apply the various converters to improve the power quality (BL-3)         3. Analyze the various ac-dc converters (BL-4)         MODULE-4       Passive and Active Filters         Power quality mitigation devices: Passive filters, active filters, hybrid filters. DSTATCOM         (Distribution static compensator), DVR (Dynamic voltage restorer) and UPQC (Universal pow         quality conditioner).         At the end of the Module 4, students will be able to:         1. Explain the concept of passive and active filters (BL-2)         2. Analyze different types of power quality mitigation devices (BL-4)         MODULE-5       FACTS Devices         FACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).         STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensato).         UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).         At the end of the Module 5, students will be able to:         1. Understand the concept of FACTS devices (B	Single-phase improved power quality ac-dc converters: Buck, boost, buck-boost, PWM VSC									
Three-phase improved power quality ac-dc converters: VSC, multilevel VSCs, multipulse VSC         PWM CSC (Current voltage source converters). Multipulse ac-dc converters: Diode and thyrist based converters         At the end of the Module 3, students will be able to:         1. Understand the concept of power quality (BL-2)         2. Apply the various converters to improve the power quality (BL-3)         3. Analyze the various ac-dc converters (BL-4)         MODULE-4       Passive and Active Filters         10 Hours         Power quality mitigation devices: Passive filters, active filters, hybrid filters. DSTATCOM         (Distribution static compensator), DVR (Dynamic voltage restorer) and UPQC (Universal pow quality conditioner).         At the end of the Module 4, students will be able to:         1. Explain the concept of passive and active filters (BL-2)         2. Analyze different types of power quality mitigation devices (BL-4)         MODULE-5       FACTS Devices         FACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).         STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensator)         UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).         At the end of the Module 5, students will be able to:         1. Understand the concept of FACTS devices (BL-2)         2. Analyze the operation of different types of FACTS Devices (BL-4)	(Voltage source convert	ters), multilevel VSCs, PWM CSC (Cu	rrent voltage source converters).							
PWM CSC (Current voltage source converters). Multipulse ac-dc converters: Diode and thyrist based converters         At the end of the Module 3, students will be able to:         1. Understand the concept of power quality (BL-2)         2. Apply the various converters to improve the power quality (BL-3)         3. Analyze the various ac-dc converters (BL-4)         MODULE-4       Passive and Active Filters         Power quality mitigation devices: Passive filters, active filters, hybrid filters. DSTATCOM (Distribution static compensator), DVR (Dynamic voltage restorer) and UPQC (Universal pow quality conditioner).         At the end of the Module 4, students will be able to:         1. Explain the concept of passive and active filters (BL-2)         2. Analyze different types of power quality mitigation devices (BL-4)         MODULE-5       FACTS Devices         O8 Hours         FACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).         STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensator).         UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).         At the end of the Module 5, students will be able to:         1. Understand the concept of FACTS devices (BL-2)         2. Analyze the operation of different types of FACTS Devices (BL-4)	Three-phase improved power quality ac-dc converters: VSC, multilevel VSCs, multipulse VSCs									
based converters         At the end of the Module 3, students will be able to:         1. Understand the concept of power quality (BL-2)         2. Apply the various converters to improve the power quality (BL-3)         3. Analyze the various ac-dc converters (BL-4)         MODULE-4       Passive and Active Filters         Power quality mitigation devices: Passive filters, active filters, hybrid filters. DSTATCOM         (Distribution static compensator), DVR (Dynamic voltage restorer) and UPQC (Universal pow quality conditioner).         At the end of the Module 4, students will be able to:         1. Explain the concept of passive and active filters (BL-2)         2. Analyze different types of power quality mitigation devices (BL-4)         MODULE-5       FACTS Devices         O8 Hours         FACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).         STATCOM (Static Synchronous Compensator). SSC (Static Series Synchronous Compensator).         UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).         At the end of the Module 5, students will be able to:         1. Understand the concept of FACTS devices (BL-2)         2. Analyze the operation of different types of FACTS Devices (BL-4)	PWM CSC (Current voltage source converters). Multipulse ac-dc converters: Diode and thyristor									
At the end of the Module 3, students will be able to:         1. Understand the concept of power quality (BL-2)         2. Apply the various converters to improve the power quality (BL-3)         3. Analyze the various ac-dc converters (BL-4)         MODULE-4       Passive and Active Filters         10 Hours         Power quality mitigation devices: Passive filters, active filters, hybrid filters. DSTATCOM         (Distribution static compensator), DVR (Dynamic voltage restorer) and UPQC (Universal pow quality conditioner).         At the end of the Module 4, students will be able to:         1. Explain the concept of passive and active filters (BL-2)         2. Analyze different types of power quality mitigation devices (BL-4)         MODULE-5       FACTS Devices         PACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).         STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensator)         UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).         At the end of the Module 5, students will be able to:         1. Understand the concept of FACTS devices (BL-2)         2. Analyze the operation of different types of FACTS Devices (BL-4)	based converters									
1. Understand the concept of power quality (BL-2)         2. Apply the various converters to improve the power quality (BL-3)         3. Analyze the various ac-dc converters (BL-4)         MODULE-4       Passive and Active Filters         Power quality mitigation devices: Passive filters, active filters, hybrid filters. DSTATCOM         (Distribution static compensator), DVR (Dynamic voltage restorer) and UPQC (Universal pow quality conditioner).         At the end of the Module 4, students will be able to:         1. Explain the concept of passive and active filters (BL-2)         2. Analyze different types of power quality mitigation devices (BL-4)         MODULE-5       FACTS Devices         PACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).         STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensator)         UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).         At the end of the Module 5, students will be able to:         1. Understand the concept of FACTS devices (BL-2)         2. Analyze the operation of different types of FACTS Devices (BL-2)         2. Analyze the operation of different types of FACTS Devices (BL-4)	At the end of the Module 3, students will be able to:									
MODULE-4Passive and Active Filters10 HoursPower quality mitigation devices: Passive filters, active filters, hybrid filters. DSTATCOM(Distribution static compensator), DVR (Dynamic voltage restorer) and UPQC (Universal powquality conditioner).At the end of the Module 4, students will be able to:1. Explain the concept of passive and active filters (BL-2)2. Analyze different types of power quality mitigation devices (BL-4)MODULE-5FACTS Devices08 HoursFACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensator)UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).At the end of the Module 5, students will be able to:1. Understand the concept of FACTS devices (BL-2)2. Analyze the operation of different types of FACTS Devices (BL-2)2. Analyze the operation of different types of FACTS Devices (BL-4)	<ol> <li>Understand the concept of power quality (BL-2)</li> <li>Apply the various converters to improve the power quality (BL-3)</li> <li>Analyze the various ac-dc converters (BL-4)</li> </ol>									
Power quality mitigation devices: Passive filters, active filters, hybrid filters. DSTATCOM         (Distribution static compensator), DVR (Dynamic voltage restorer) and UPQC (Universal pow quality conditioner).         At the end of the Module 4, students will be able to:         1. Explain the concept of passive and active filters (BL-2)         2. Analyze different types of power quality mitigation devices (BL-4)         MODULE-5       FACTS Devices         08 Hours         FACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).         STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensator)         UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).         At the end of the Module 5, students will be able to:         1. Understand the concept of FACTS devices (BL-2)         2. Analyze the operation of different types of FACTS Devices (BL-4)	<b>MODULE-4</b>	MODULE-4 Passive and Active Filters 10 Hours								
(Distribution static compensator), DVR (Dynamic voltage restorer) and UPQC (Universal pow quality conditioner).         At the end of the Module 4, students will be able to:         1. Explain the concept of passive and active filters (BL-2)         2. Analyze different types of power quality mitigation devices (BL-4)         MODULE-5       FACTS Devices         08 Hours         FACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).         STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensator)         UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).         At the end of the Module 5, students will be able to:         1. Understand the concept of FACTS devices (BL-2)         2. Analyze the operation of different types of FACTS Devices (BL-4)	Power quality mitigation	devices: Passive filters, active filters, h	ybrid filters. DSTATCOM							
quality conditioner).         At the end of the Module 4, students will be able to:         1. Explain the concept of passive and active filters (BL-2)         2. Analyze different types of power quality mitigation devices (BL-4)         MODULE-5       FACTS Devices         08 Hours         FACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).         STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensator).         UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).         At the end of the Module 5, students will be able to:         1. Understand the concept of FACTS devices (BL-2)         2. Analyze the operation of different types of FACTS Devices (BL-4)	(Distribution static comp	pensator), DVR (Dynamic voltage restore	er) and UPQC (Universal power							
At the end of the Module 4, students will be able to:         1. Explain the concept of passive and active filters (BL-2)         2. Analyze different types of power quality mitigation devices (BL-4)         MODULE-5       FACTS Devices         08 Hours         FACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).         STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensator).         UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).         At the end of the Module 5, students will be able to:         1. Understand the concept of FACTS devices (BL-2)         2. Analyze the operation of different types of FACTS Devices (BL-4)	quality conditioner).									
<ol> <li>Explain the concept of passive and active filters (BL-2)</li> <li>Analyze different types of power quality mitigation devices (BL-4)</li> <li>MODULE-5 FACTS Devices 08 Hours</li> <li>FACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).</li> <li>STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensato UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).</li> <li>At the end of the Module 5, students will be able to:         <ol> <li>Understand the concept of FACTS devices (BL-2)</li> <li>Analyze the operation of different types of FACTS Devices (BL-4)</li> </ol> </li> </ol>	At the end of the Module 4	4, students will be able to:								
2. Analyze different types of power quality mitigation devices (BL-4)         MODULE-5       FACTS Devices       08 Hours         FACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).       STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensator)         UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).       At the end of the Module 5, students will be able to:         1. Understand the concept of FACTS devices (BL-2)       2. Analyze the operation of different types of FACTS Devices (BL-4)	<b>1.</b> Explain the concep	t of passive and active filters (BL-2)								
MODULE-5FACTS Devices08 HoursFACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous CompensatoUPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).At the end of the Module 5, students will be able to:1. Understand the concept of FACTS devices (BL-2)2. Analyze the operation of different types of FACTS Devices (BL-4)Total hours: 48 Hours	<b>2.</b> Analyze different ty	ypes of power quality mitigation devices (Bl	L-4)							
<ul> <li>FACTS devices: TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitors).</li> <li>STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensato UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).</li> <li>At the end of the Module 5, students will be able to:         <ul> <li><b>1.</b> Understand the concept of FACTS devices (BL-2)</li> <li><b>2.</b> Analyze the operation of different types of FACTS Devices (BL-4)</li> </ul> </li> </ul>	MODULE-5	FACTS Devices	08 Hours							
<ul> <li>STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensato UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).</li> <li>At the end of the Module 5, students will be able to:         <ul> <li>1. Understand the concept of FACTS devices (BL-2)</li> <li>2. Analyze the operation of different types of FACTS Devices (BL-4)</li> </ul> </li> <li>Total hours: 48 Hours</li> </ul>	FACTS devices: TCR (	Thyristor Controlled Reactor), TSC (Thyr	istor Switched Capacitors).							
UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller). At the end of the Module 5, students will be able to: 1. Understand the concept of FACTS devices (BL-2) 2. Analyze the operation of different types of FACTS Devices (BL-4) Total hours: 48 Hours	STATCOM (Static Synchronous Compensator). SSSC (Static Series Synchronous Compensator).									
At the end of the Module 5, students will be able to: <b>1.</b> Understand the concept of FACTS devices <b>(BL-2)</b> <b>2.</b> Analyze the operation of different types of FACTS Devices <b>(BL-4)</b> <b>Total hours: 48 Hours</b>	UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).									
<b>1.</b> Understand the concept of FACTS devices (BL-2) <b>2.</b> Analyze the operation of different types of FACTS Devices (BL-4)         Total hours: 48 Hours	At the end of the Module 5, students will be able to:									
Total hours: 48 Hours	<ol> <li>Understand the concept of FACTS devices (BL-2)</li> <li>Analyze the operation of different types of FACTS Devices (BL-4)</li> </ol>									
			Total hours: 48 Hours							

# Term work:

## Content beyond syllabus:

1. Advanced controlling techniques to improve Power Quality

## Self-Study:

contonia	to promote ben Lean							
S.NO	Module	Reference						
1	<b>Advanced Solid</b>	https://youtu.be/XgY3HiBhHEE						
T	State Devices							
2	DC – DC and Single	https://www.youtube.com/watch?v=p5NZw5fUvgQ						
2	Phase converters							
3	AC-DC Converters	https://www.youtube.com/watch?v=JXJaRPXPwjQ						
4	<b>Passive and Active</b>	https://www.youtube.com/watch?v=EoPGgrMAAJo						
4	Filters							



5	FACTS Devices	https://www.youtube.com/watch?v=GVxY3nE5mO8&list=PLLy_2iUC 5
		or with an equilation of the second sec

1. Ned Mohan, Tore M. Undeland and William P. Robbins, "Power Electronics – Converters, Applications and Design", John Willey & sons, Inc., 3rd ed., 2003.

2. Muhammad H. Rashid, "Power Electronics - Circuits, Devices and Applications", Prentice Hall of India, 3rd ed., 2009.

3. Narain G. Hingorani, Laszlo Gyugyi, "Understanding FACTS", IEEE Press.

## Reference Book(s):

- 1. Derek A. Paice "Power Electronic Converter Harmonics Multipulse Methods for Clean Power", IEEE Press, 1996.
- 2. Muhammad H. Rashid , "Power Electronics Handbook", Elsevier, 3rd ed., 2011.
- 3. P.C.Sen, "Modern Power Electronics", S. Chand and Co. Ltd., New Delhi, 2000.
- 4. Vijay K. Sood, "HVDC and FACTS Controllers Applications of Static Converters in Power Systems", Kluwer Academic Publishers, Boston, 2004.
- 5. L. Umanand, "Power Electronics Essentials and Applications", Wiley India Ltd., 2009

## **Online Resources / Web References:**

- 1. https://www.youtube.com/watch?v=MeOYUx07SCk
- 2. https://www.youtube.com/watch?v=ErMz2MI5DQo
- 3. https://www.youtube.com/watch?v=ohwGWysVuXU
- 4. https://www.academia.edu/38805211/Advanced_Power_Electronics_Converters_PWM_Converters_ Processing_AC_Voltages
- 5. https://www.electronicbo.com/2019/06/Advanced-Power-Electronics-Converters.html
- 6. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
- 7. https://nptel.ac.in/courses/108/106/108106073/
- 8. https://www.youtube.com/watch?v=MeOYUx07SCk&list=PLUpFmz4G8ZyZx2fG5B_GRVIhTquy poAWZ
- 9. https://www.youtube.com/watch?v=ohwGWysVuXU
- 10. https://www.youtube.com/watch?v=0jevuayGmmU&list=PLLy_2iUCG87DzWK9cLYKxjH1LRAC xdEKi



NARAYANA ENGINEERING COLLEGE:GUDUR										
21EE4010	ADVANCED ELECTRICAL DRIVES R2021									
	Hours / Week			Total	Credit	Max Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requisite: Nil										
Course Objectives:										
1. To under	1. To understand steady state operation and transient dynamics of a motor load system.									
2. To acqu	2. To acquire knowledge of fuzzy logic and neural network concepts in various drives									
Course Ou	<b>Course Outcomes</b> : After successful completion of the course, the student will be able to:									
CO 1	Analyze the Power electronic converters for electrical drives.(BL-4)									
CO 2	2 Analyze the field oriented control of machines.(BL-4)									
CO 3	Understand the vector control of electrical drives.(BL-2)									
CO 4	Understa	nd the ser	nsor less co	ontrol of A	C drives.(	BL-2)				
CO 5	Analyze	the direct	torque cor	ntrol of Inc	luction Ma	achines.(B	L-4)			

	CO-PO Mapping													
СО		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	3		2								1	2
CO2	2	2	3		2								1	2
CO3	2	2	2		2								1	2
<b>CO4</b>	2		3		2									2
CO5	2	2	2		2									2
	1: Low, 2-Medium, 3- High													

# COURSE CONTENT

**MODULE – 1** (08 Hrs)

# INTRODUCTION TO POWER CONVERTERS FOR ELECTRIC DRIVES

Switching converters and their applications to variable frequency drives - Power electronic converters for control of amplitude-AC variable frequency drives - Mathematical representation of switching functions- reduction of switching losses in practical switches. MATLAB simulation -study on 'D0Q' transformation in various frames of reference. Free acceleration characteristics of Induction motor from 'D0Q' model viewed from various reference frames

At the end of the Module 1, students will be able to:

- 1. Explain the switching converters ad their application.(BL-2)
- 2. Understand the Power electronic converters for control of drives.(BL-2)
- 3. Explain the characteristics of Induction motor from various reference frames. (BL-2)

MODULE -2 (10 Hrs)

# FIELD ORIENTATED CONTROL

Field oriented control of induction machines - Theory – DC drive analogy.



At the end of the Module 2, students will be able to:

- 1. Understand the field orientated control and its application. (BL-2)
- 2. Analyze the Field oriented control of induction machines. (BL-4)
- 3. Analyze the Field oriented control of DC drive. (BL-4)

# MODULE-3 (10 Hrs)

# VECTOR CONTROL

Vector control concept- Direct or Feedback vector control - Indirect or Feed forward vector control – Flux vector estimation - Space vector modulation control-PWM current control-MATLAB simulation direct & indirect vector control induction motor- closed loop speed control of VVVF PMAC motor drive & FPGA based closed loop control of BLDC motor drive.

At the end of the Module 3, students will be able to:

- 1. Understand the vector control concept. (BL-2)
- 2. Understand the MATLAB simulation direct & indirect vector of control induction motor. (BL-2).
- 3. Explain FPGA based closed loop control of BLDC motor drive. (BL-2)

# MODULE-4 (10 Hrs)

# SENSORLESS CONTROL OF AC DRIVES

Introduction to sensor less control of AC drives – Advantages – speed estimation methods-State synthesis method – model reference adaptive system – observer based techniques -MATLAB simulation model reference adaptive system for speed estimation.

At the end of the Module 4, students will be able to:

- 1. Understand the sensor less control of AC drives.(BL-2)
- 2. Explain the state synthesis method. (BL-2)
- 3. Understand the MATLAB simulation model reference adaptive system for speed estimation. (BL-2)

# MODULE-5 DIRECT TORQUE CONTROL

Direct torque control of Induction Machines – Torque expression with stator and rotor fluxes, DTC control strategy – optimum switching vector selection – reduction of torque ripple methods- adaptive control. MATLAB simulation-open loop control-DTC of induction motor drive-adaptive control.

(10 Hrs)

At the end of the Module 5, students will be able to:

- 1. Understand the Direct torque control of Induction Machines. (BL-2)
- 2. Explain the Torque expression with stator and rotor fluxes.(BL-2)
- 3. Explain optimum switching vector selection.(BL-2)

Total hours: 48 hours

## **Content beyond syllabus:**

1. GA based drives

# Self-Study:

SNO	Торіс	CO	Reference
1	Reduction of switching	CO1	https://www.youtube.com/watch?v=7kGPLVXvsPk
	losses in practical		


	switches		
2	Field oriented control of induction machines	CO2	https://www.youtube.com/watch?v=2jtk1_rcYYQ
3	FPGA based closed loop control of BLDC motor drive	CO3	https://www.youtube.com/watch?v=V0XP3N5c2GY
4	MATLAB simulation model reference adaptive system for speed estimation	CO4	https://www.youtube.com/watch?v=9W2CzT0wq3Q
5	DTC of induction motor drive	CO5	https://www.youtube.com/watch?v=mG7AxRkGrr8

#### Text Book(s):

1. Bimal.K. Bose, "Power Electronics and Variable frequency drives", Standard Publishers Distributors, New Delhi, 2000.

2. Dubey G.K., "Power Semiconductor controlled drives", Prentice Hall inc, A division of Simon and Schester England cliffs, New Jersey, 1989.

#### **Reference Book(s):**

1. Murphy J.M.D, Turnbull, F.G, "Thyristor control of AC motor", Pergamon press, Oxford, 1988.

2. Sheperal, Wand Hully, L.N. "Power Electronic and Motor control" Cambridge University Press Cambridge, 1987.

3. Dewan, S. Slemon B., Straughen, A. G.R., "Power Semiconductor drives", John Wiley and Sons, NewYork, 1984.

#### **Online Resources:**

1. https://doku.pub/documents/electric-drives-by-gk-dubey-59qge6y3vm0n

2. <u>https://nptel.ac.in/courses/108/104/108104011/</u>

#### Web Resources:

1. <u>https://www.youtube.com/watch?v=6DctdwlDKhc&list=PLA5CA7D35114BA425</u> 2.<u>https://www.youtube.com/watch?v=WsDPqDqnpyw&list=PLuv3GM6gsE3UGP1cSOl1KuEX</u> <u>scGFdKXB</u>



		NARAYA	NA ENG	INEERING	G COLLEG	<b>SE:GUDU</b>	R						
21EE4015 HVDC and FACTS													
	Н	lours / Wee	ek	Total	Credit		Max Mar	ks					
	L	Т	Р	hrs	С	CIE	HVDC	TOTAL					
	3	0	0	48	3	40	60	100					
Pre-requisite: Transmission and Distribution, Power Electronics and High voltage engineering													
Course Objectives:													
1	1. To introduce the extra high voltage AC and DC transmission												
2	2. To introduce the HVDC transmission system with types, control and protection.												
3	. To discus	To discuss about the design factors of lines and cables.											
4	. To provid	le knowle	dge on FAC	CTS contro	llers.								
5	. To introd	luce the re	active pov	ver contro	l techniqu	es.							
6	. To study	the chara	cteristics, r	nodelling	and opera	ting schen	nes of diffe	erent types					
	of shunt	and series	switched	reactive p	ower gene	erating dev	vices.						
Course Ou	<b>itcomes</b> : Af	ter success	sful compl	etion of th	e course, tl	ne student	will be ab	e to:					
CO 1	Find the a	pplications	of differen	it types of H	HVDC links.	(BL-2)							
CO 2	Apply con	verters for	HVDC trans	smission fo	r control of	converters	.(BL-3)						
CO 3	Understa	nd the con	cept of filte	rs to mitiga	ite harmon	ics, concep [.]	t of reactive	e power					
	requirem	ents.(BL-2)		-									
CO 4	Understar	nd the work	ing princip	les of FAC	TS devices.	(BL-2)							
CO 5	Analyze t	he perform	ance of Ser	ies, Shunt a	and combine	ed FACTS	controllers.	(BL-4)					

	CO-PO Mapping													
СО				PSO										
	PO										PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2										3	2
CO2	3		3										2	2
CO3	2	2	2										2	2
CO4	2	3	2										3	2
CO5	2	2	3										3	2
					1: Lo	w, 2-N	ledium	i, 3- Hi	gh					

	COURSE CONTENT												
MODULE – 1		Introduction	10Hrs										
Comparison of AC and DC transmission systems, application of DC transmission, types of DC links, typical ayout of a HVDC converter station, HVDC converts, pulse number, analysis of Gratez circuit with and without overlap, converter bridge characteristics, equivalent circuits or rectifier and inverter													
At the end of the Modu 1. Explain the co	e puis ile 1, : ompa	se converters. students will be able to: arison of HVDC and HV AC.(BL-2)											
3. Understand	the (	Characteristics of 6 pulse and 12 pulse converters.(BL-2	2)										
MODULE -2 CONVERTER & HVDC SYSTEM CONTROL 10Hrs													
Principle of DC link co angle control, current	rinciple of DC link control –Converters control characteristics- system control hierarchy, firing ngle control, current and excitation angle control, starting and stopping of DC link.												



At the end of the Module 2, students will be able to: 1. Understand the principle of DC link control.(BL-2) 2. Understand the Firing Angle Control for the Converters.(BL-2) 3. Explain the starting and stopping of DC link. (BL-2) MODULE-3 HARMONICS, FILTERS AND REACTIVE POWER CONTROL 10Hrs Introduction, generation of Harmonics, AC and DC Filters. Reactive power requirements in steady state, sources of reactive power, static VAR systems. POWER FLOW ANALYSIS IN AC/DC SYSTEMS: Modeling of DC/AC converts, controller equations solutions of AC/DC load flow- simultaneous method, sequential method. At the end of the Module 3, students will be able to: 1. Understand the Basics generation of harmonics.(BL-2) 2. Explain the calculation of voltage & Current harmonics. (BL-2) 3. Explain the types of AC filters.(BL-2) **MODULE-4** INTRODUCTION TO FACTS 10Hrs Flow of power in AC parallel paths and meshed systems, basic types of FACTS controllers, brief description and definitions of FACTS controllers. STATIC SHUNT COMPENSATION: Objectives of shunt compensation, methods of controllable VAR generation, static VAR compensators, SVC and STATCOM, comparison between SVC and STATCOM. At the end of the Module 4, students will be able to: 1. Explain the basic principles, characteristics of different types of FACTS controllers. (BL-2) 2. Explain the new methods adopted in power system control. (BL-2) 3. Understand the static shunt compensation. (BL-2) **MODULE-5 STATIC SERIES COMPENSATORS** 8Hrs Objectives of series compensation, variable impedance type- thyristor switched series capacitors (TCSC), and switching converter type series compensators, static series synchronous compensator (SSSC)- power angle characteristics-basic operating control schemes. At the end of the Module 5, students will be able to: 1. Understand the objectives of series compensation of power systems. (BL-2) 2. Understand the power angle characteristics. (BL-2) 3. Explain the basic operating control schemes. (BL-2) Total hours: 48 hours

#### Term work:

1. Develop HVDC Transmission system using mat lab software

2. The steady-state and transient performance of a 12-pulse, 1000 MW (500 kV-2kA) 50/60 Hz HVDC transmission system.

3. FACTS and HVDC Technologies for the Development and Enhancement of Future Power Systems.

4.Use of HVDC and FACTS which can be applied in transmission and distribution systems

5. Simulation of various applications using FACTs devices.

6. AC-DC Power flow analysis using FACTS devices.

7. Stabilty of Power Transmission Capability of HVDC system using facts controllers.

8. Design of DC breakers modelling using MATLAB

9. Design of Power control in HVDC using MATLAB

10. Modelling and digital simulation of STATACOM using MATLAB



#### Content beyond syllabus:

1. Design of real-time industrial projects.

2. Application of various compensation techniques in power system.

#### Self-Study:

Contents to promote self-Learning:

SNO	Торіс	Reference
1	Introduction of DC power	https://www.cet.edu.in/noticefiles/229_HVDC_NOTE.pdf
	transmission	
2	Analysis of HVDC	https://aits-tpt.edu.in/wp-content/uploads/2018/08/HVDC-
	converters	2-Unit.pdf
3	Control of HVDC converter	https://sari-
	and systems	energy.org/oldsite/PageFiles/What_We_Do/activities/HVDC_
		Training/Presentations/Day_2/3.HVDC_CONTROLS.pdf
4	Introduction To Facts	https://nptel.ac.in/courses/108/107/108107114/
5		https://nptel.ac.in/courses/108/107/108107114/
	Static Series Compensators	

#### Text Book(s):

1. Padiyar, K. R., "HVDC power transmission system", New Age International (P) Ltd., New Delhi, Second Edition, 2010.

 Edward Wilson Kimbark, "Direct Current Transmission", Vol. I, Wiley interscience, New York, London, Sydney, 1971.

3. Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering", New Age International (P) Ltd., New Delhi, 1990.

 R.MohanMathur,RajivK.Varma, "Thyristor–Based Facts Controllers for Electrical Transmission Systems", IEEE press and JohnWiley&Sons,Inc,2002.

5.Narain G.Hingorani, "Understanding FACTS-Concepts and Technology of Flexible AC Transmission Systems", Standard Publishers Distributors, Delhi-110006, 2011.

#### Reference Book(s):

1. Direct Current Transmission, Vol. 1, E. W. Kimbark, Wiley, 1971

 High Voltage Direct Current Transmission, Jos Arrillaga, IEE Power and Energy series 29, 2nd Edition, 1998

3. EHV-AC, HVDC Transmission & Distribution Engineering, S Rao, Khanna Publishers, 4 th Edition, 2008.

4.K.R.Padiyar,"FACTS Controllersin Power Transmission and Distribution", New Age International (P) Limited, Publishers, New Delhi, 2008

5. A.T.John, "FlexibleA.C.TransmissionSystems", Institution of Electrical and Electronic Engineers (IEEE), 1999.

6. V.K.Sood, HVDC and FACTS controllers–Applications of Static Converters in Power System, APRIL2004,KluwerAcademic Publishers,2004.

#### Department of E.E.E :: 2021-2022 Online Resources/ Web Resources:

1. <u>https://nptel.ac.in/courses/108/104/108104013/</u>

2. <u>http://www.ee.uidaho.edu/ee/power/ee</u>

3. <u>https://www.powereng.com/our-services/power-delivery/hvdc-fact/</u>

4.<u>https://en.wikipedia.org/wiki/High-voltage_direct_current</u>

5.<u>https://www.ti.com/lit/an/sloa289a/sloa289a.pdf?ts=1592377419880&ref_url=https%253A%252F%2</u> www.google.co.in%252F

7. https://pv-magazine-usa.com/2020/03/31/hvdc-transmission-helps-investors-but-may-not-help-solar/

8.<u>http://www.renewableenergyfocus.com/view/3567/hvdc-transmission-from-energy-source-to-</u> consumer/

NECR B.TECH 21



		NARAY	YANA ENG	INEERINO	G COLLEGE	:GUDUR								
21EE4020		AI	<b>DVANCED</b>	<b>POWER C</b>	ONVERTE	RS		R2021						
	Н	ours / Wee	ek	Total	Credit		Max Mar	ks						
	L	Т	Р	hrs	С	CIE	SEE	TOTAL						
	3	0	0	48	3	40	60	100						
Pre-requisite: Power Electronics														
Course Objectives:														
1.	To analyz	e the dc-d	c voltage re	egulators										
2.	2. To describe the operation of resonant converters													
3.	To descri	o describe the operation of multi level converters and multi pulse converters with												
	switching strategies for high power													
4.	To under	stand Prin	ciple of Op	eration DC	power sup	oplies								
5.	To analy	ze the AC p	ower supp	olies										
		-												
Course Ou	itcomes: A	after succe	sstul com	pletion of	the course	, the stude	ent will be	able to:						
CO 1	Evaluate d	ifferent do	-dc voltage	e regulator	rs <b>(BL-3)</b>									
CO 2	Analyze r	esonant co	onverters(	BL-3)										
CO 3	Evaluate	various mı	ılti-level in	iverter con	figurations	5 <b>(BL-3)</b>								
CO 4	Select app	propriate p	hase shifti	ing conver	ter for a mu	ulti-pulse c	onverter <b>(</b> I	3L-3)						
CO 5	Analyze t	he various	DC power	supplies (	BL-3)									

	CO-PO Mapping														
	РО													PSO	
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
C01	2	2											2	3	
CO2	3	2	2										3	3	
CO3	1	1	1										2	3	
CO4	2	2											2	2	
CO5	1	3											2	3	
					1: Lov	<i>N</i> , 2-M	edium	1, <b>3-</b> Hi	igh						

	COURSE CONTENT											
MODULE – 1	Switching Voltage Regulators	10 <b>Hours</b>										
Introduction; Linear power supply (voltage regulators); Switching voltage regulators; Review of basic dc-dc voltage regulator configurations -Buck, Boost, Buck-Boost converters and their analysis for continuous and discontinuous mode; Other converter configurations like Flyback converter, Forward converter, Half bridge, Full bridge configurations, Push-pull converter; Design criteria for SMPS; Multi- output switch mode regulator. At the end of the Module 1, students will be able to: 1. Recall the basic concepts of voltage regulators (BL-1) 2. Understand the other converter configurations (BL-2)												
<b>J.</b> Evaluate the unit	erent de voltage regulators (DE 3)											
MODULE - 2 Resonant Converters 10 Hours												
Introduction, Need of r converters, Resonant sv switching dc-dc converter	esonant converters, Classification of r vitch converters, zerovoltage switchin rs, clamped voltage topologies.	esonant converters, Load resonant g dc-dc converters, zero current										



At the end of the Module 2, students will be able to:

- 1. understand the concept of resonant conversion(BL-2)
- 2. compare & analyze the zero voltage and current switching dc-dc converters (BL-2)

MODULE-3	Multi-level converters	10 Hours
Need for multi-level inver	ters, Concept of multi-level, Topologies for	nulti-level: Diode Clamped, Flying
capacitor and Cascaded H	-bridge multilevel Converters configuration	ns; Features and relative
comparison of these con	figurations applications, Introduction to c	arrier based PWM technique for
multi-level converters.		
At the end of the Module 3	s, students will be able to:	
<b>1.</b> Understand the conc	ept of multi-level <b>(BL-2)</b>	
<b>2.</b> Evaluate various mu	lti-level inverter configurations (BL-3)	
<b>3.</b> Understandcarrier b	ased PWM technique for multi-level conver	ters(BL-2)
MODULE-4	Multipulse Converters	08 Hours
Concept of multi-pulse, Co	onfigurations for m-pulse (m=12,18,24) c	onverters, Different phase shifting
transformer (Υ-Δ1, Υ-Δ2, Υ	7-Z1 and Y-Z2) configurations for multi-puls	e converters, Applications.
At the end of the Module 4	, students will be able to:	
<b>1.</b> Explain the concept	t of multi-pulse <b>(BL-3)</b>	
2. Analyze different p	hase shifting transformer configurations for	multi-pulse converters <b>(BL-4)</b>
<b>3.</b> Understand the app	blications of multipulse converters(BL-2)	
MODULE-5	DC & AC Power Supplies	10 Hours
DC Power Supplies – Ty	pes – Switched Mode DC Power Supplies	- Fly Back Converter –Forward
Converter – Push-Pull Con	nverter – Half Bridge Converter – Full Brid	ge Converter –Resonant DC Power
Supplies – Bidirectional P	ower Supplies – Applications –AC Power S	upplies – Types – Switched Mode
Ac Power Supplies – Res	sonant AC Power Supplies – Bidirectional	Ac Power Supplies – Multistage
Conversions – Control Ci	rcuits – Power Line Disturbances – Powe	er Conditioners – Uninterruptible
Power Supplies – Applicat	ions	
At the end of the Module 5	, students will be able to:	
<b>1.</b> Understand the swit	ched mode dc power supplies(BL-2)	
<b>2.</b> Analyze the types of	dc power supplies <b>(BL-3)</b>	
3. Analyze Bidirection	al Power Supplies (BL-3)	
		Total hours: 48 Hours

#### Term work:

- 1. Evaluate the performance and operating modes of SLR/PLR dc-dc converter with the change in switching frequency.
- 2. Simulate/Design a circuit for a Buck Converter with ZVS/ZCS to regulate the output voltage Vo with a given input voltage Vin.
- **3**. Carrier based Sine PWM control of a CHB multilevel inverter and study of harmonic spectrum.
- 4. Study the operation and performance of second order converters like Buck-Boost, Fly back, forward converters etc.
- 5. Study the operation and performance of fourth order converters like C'uk or Sepic converters
- 6. Study of harmonic spectrum for 12 and 18 pulse converters.
- 7. Design based Problems (DP)/Open Ended Problem: Course coordinator can assign the design based problem/open ended problem.
- 8. Major Equipment: Simulation software like MATLAB, PSIM, Scilab, Power Electronic Converters, CRO/DSO, meters, Current/Voltage Probes, Isolation transformer etc. as demanded by the course.



#### Content beyond syllabus:

1.Advanced multilevel converters

#### Self-Study:

Contents to promote self-Learning:

C(	ments	to promote self-Learn	iiig.
	S.NO	Module	Reference
	1	Switching Voltage Regulators	https://www.youtube.com/watch?v=Q0E-ZAsqzKE
	2	Resonant	https://www.youtube.com/watch?v=53avT03BYnI
	2	Converters	
	2	Multi-level	https://www.youtube.com/watch?v=J3iEhAtcwZs
	3	converters	
	4	Multipulse	https://www.youtube.com/watch?v=cqT6oOh3ggc
	4	Converters	
	5	DC Power Supplies	https://www.youtube.com/watch?v=flAETm0RreY
	6	AC Power Supplies	https://www.youtube.com/watch?v=DwiBp-Oohvs

#### Text Book(s):

1. Ned Mohan, Tore M. Undeland and William P. Robbins, "Power Electronics – Converters, Applications and Design", John Willey & sons, Inc., 3rd ed., 2003.

2. Muhammad H. Rashid, "Power Electronics - Circuits, Devices and Applications", Prentice Hall of India, 3rd ed., 2009.

3. Bin Wu, "High Power Converters and AC Drives", John Willey & sons, Inc., 2006.

#### Reference Book(s):

- 1. Derek A. Paice "Power Electronic Converter Harmonics Multipulse Methods for Clean Power", IEEE Press, 1996.
- 2. Muhammad H. Rashid , "Power Electronics Handbook", Elsevier, 3rd ed., 2011.
- 3. P.C.Sen, "Modern Power Electronics", S. Chand and Co. Ltd., New Delhi, 2000.
- 4. Vijay K. Sood, "HVDC and FACTS Controllers Applications of Static Converters in Power Systems", Kluwer Academic Publishers, Boston, 2004.
- 5. L. Umanand, "Power Electronics Essentials and Applications", Wiley India Ltd., 2009

#### **Online Resources / Web References:**

- 1. https://www.youtube.com/watch?v=MeOYUx07SCk
- 2. https://www.youtube.com/watch?v=ErMz2MI5DQo
- 3. https://www.youtube.com/watch?v=ohwGWysVuXU
- 4. https://www.academia.edu/38805211/Advanced_Power_Electronics_Converters_PWM_Converters_ Processing_AC_Voltages
- 5. https://www.electronicbo.com/2019/06/Advanced-Power-Electronics-Converters.html
- 6. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
- 7. https://nptel.ac.in/courses/108/106/108106073/
- 8. https://www.youtube.com/watch?v=MeOYUx07SCk&list=PLUpFmz4G8ZyZx2fG5B_GRVIhTquy poAWZ
- 9. https://www.youtube.com/watch?v=ohwGWysVuXU
- 10. https://www.youtube.com/watch?v=0jevuayGmmU&list=PLLy_2iUCG87DzWK9cLYKxjH1LRAC xdEKi

ADVANCED POWER SEMICONDUCTOR DEVICES AND PROTECTION         R2021           Hours / Week         Total         Credit         Max Marks													
21EE4025	ADVANC	ED POWE	R SEMICO	NDUCTOR	R DEVICES	AND PRO	TECTION	R2021					
	Н	ours / We	ek	Total	Credit		Max Ma	rks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
	3	0	0	48	3	40	60	100					
Pre-requ	<b>isite:</b> Revie	ew of intro	ductory co	ncepts of p	bower sem	iconducto	c devices						
<ol> <li>To improve power seniconductor device structures for adjustable speed filotor controlapplications.</li> <li>To understand the static and dynamic characteristics of current controlled powersemiconductor devices</li> <li>To understand the static and dynamic characteristics of voltage controlled powersemiconductor devices</li> <li>To enable the students for the selection of devices for different power electronicsApplications</li> <li>To understand the control and firing circuit for different devices.</li> </ol>													
CO 1	Analyze p	ower swi	tching devi	ces <b>(BL-4</b>	)	, the stud							
CO 2	Design of	current co	ntrolled de	evices and	their parar	neters <b>(BL</b>	-3)						
CO 3	Analyze t	he voltage	controlled	devices a	nd their pa	rameters (	(BL-2)						
CO 4     Understand new power semiconductor devices(BL-2)													

	CO-PO Mapping													
	РО												PSO	
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2											2	2
CO2	3	2	2										2	2
CO3	3	2											2	2
CO4	3	2											2	2
CO5	3	2	2										2	2
					1: Lov	<i>v</i> , 2-M	edium	1, 3- Hi	igh					

#### **COURSE CONTENT**

### MODULE – 1

**POWER SWITCHING DEVICES** 

10Hours

Power switching devices overview – Attributes of an ideal switch, application requirements,circuit symbols; Power handling capability – (SOA); Device selection strategy – On-state andswitching losses – EMI due to switching - Power diodes - Types, forward and reverse characteristics, switching characteristics – rating.

At the end of the Module 1, students will be able to:

- 1. Understand the Power switching devices overview(BL-2)
- 2. Analyze the Device selection strategy (BL-3)

3. Analyze the Power diodes (BL-3)

#### NECR B.TECH 21



MODULE -2	CURRENT CONTROLLED DEVICES	10 Hours	S	
BJT's – Construction, static characteristics, switching characteristics; Negative temperaturecoefficient and second breakdown; - Thyristors – Physical and electrical principle underlyingoperating mode, Two transistor analogy – concept of latching; Gate and switchingcharacteristics; converter grade and inverter grade and other types; series and paralleloperation; comparison of BJT and Thyristor – steady state and dynamic models of BJT Thyristors- Basics of GTO, MCT, FCT, RCT				
At the end of the Module 2	, students will be able to:			
<b>1.</b> Analyze the switch	ning characteristicsofBJT(BL-3)			
<b>2.</b> Analyze the Two the	ransistor analogy <b>(BL-3)</b>			
<b>3.</b> Understand the ba	sics of thyristors(BL-3)			
MODULE-3	<b>VOLTAGE CONTROLLED DEVICES</b>	10 Ho	urs	
Power MOSFETs and IGB switching characteristics,	Ts – Principle of voltage controlled devices, constr steady state and dynamic models of MOSFET and IG	uction, types,static BTs -and IGCT	and	
At the end of the Module 3	, students will be able to:			
<ol> <li>Understand the principlication</li> <li>Analyze the switchin</li> </ol>	le of voltage controlled devices <b>(BL-2)</b> g characteristics of MOSFET & IGBT <b>(BL-3)</b>			
MODULE-4	NEW SEMICONDUCTOR MATERIALS FOR DEVIC	ES 10 Hor	urs	
New semiconductor materials for devices – Intelligent power modules- Integratedgate commutated thyristor (IGCT) - Comparison of all power devices.				
At the end of the Module 4	, students will be able to:			
<b>1.</b> Understand the In	telligent power modules(BL-2)			
<b>2.</b> Analyze the Integr	atedgate commutated thyristor( <b>BL-3</b> )			
<b>3.</b> Compare all powe	er devices(BL-2)			
MODULE-5	FIRING AND PROTECTING CIRCUITS	08 Ho	urs	
Necessity of isolation, pulse transformer, optocoupler – Gate drives circuit: SCR, MOSFET,IGBTs and base driving for power BJT Over voltage, over current and gate protections;Design of snubbers.Heat transfer – conduction, convection and radiation; Cooling – liquid cooling, vapour – phase cooling				
At the end of the Module 5, students will be able to:				
Onderstand the necessity of isolation(DL-2)     Analyze the Cate drives circuit(DL-2)				
2. Analyze the Gate Grives Circuit (BL-3)				
5. Understand the design of shudders(BL-2) Total hours: 49 hours				
	100		ə	

### Term work:

- 1. Study of design of SiC MOSFETs
- 2. Tabulate the details of SCRs of different ratings
- 3. Derivation and explanation of transient thermal impedance of SCR
- 4. Study of thermal design of SCR with derivations
- 5. Study and explain paper on the state of the art and future trends of power semiconductors

#### Content beyond syllabus:

Protection against external & internal over voltages.

#### Self-Study:

Contents to promote self-Learning:

S.NO	Module	Reference
1	Power Switching Devices	https://www.youtube.com/watch?v=7XsuRUXF4wE
2	Current Controlled Devices	https://www.youtube.com/watch?v=5Jf_WWt-5vg
3	Voltage Controlled Devices	https://www.youtube.com/watch?v=lzwqcMvuYxU
4	New Semiconductor Materials For Devices	https://www.youtube.com/watch?v=88lo7MgCpNo
5	Firing And Protecting Circuits	https://www.youtube.com/watch?v=XyuY8OgMQL4

#### Text Book(s):

1. B.W Williams 'Power Electronics Circuit Devices and Applications'..

2. Rashid M.H., " Power Electronics Circuits, Devices and Applications ", Prentice Hall India, Third Edition, New Delhi, 2004

3. MD Singh and K.B Khanchandani, "Power Electronics", Tata McGraw Hill, 2001.

4. Mohan, Undeland and Robins, "Power Electronics – Concepts, applications and Design, John Wiley and Sons, Singapore, 2000.

5. Joseph Vithayathil, Power Electronics: Principles and Applications, Delhi, Tata McGraw-Hill, 2010.

#### Reference Book(s):

1. Advanced power electronics converters by Euzeli dos santos, Edison R. da silva.

2. Fundamentals of Power Semiconductor Devices by B. JayanthBaliga, Springer Press, 2008.

**3.** Power Semiconductor Devices and Circuits, Jaecklin, A.A.

4. Fundamentals of Power Semiconductor Devices, Baliga, B. Jayant

#### **Online Resources/ Web References:**

1.<u>https://www.amazon.in/Power-Electronics-Drives-Advanced-Applications-</u> ebook/dp/B086H4Z9WY

2. <u>https://www.pdfdrive.com/25-advanced-power-semiconductor-devices-apsd-e456994.html</u> 3.https://www.ttiinc.com/content/ttiinc/en/resources/product-

types/discretes.html?utm=1267&channel=ppc&gclid=CjwKCAjw1K75BRAEEiwAd41h1AEeMfdQ65z0 DUsEWQSBV_cFEI5VwuQnFLxopFizjnXDYRY4iPtUoRoCkAEQAvD_BwE

4. http://site.iugaza.edu.ps/malramlawi/files/RASHID_Power_Electronics_Handbook.pdf

5.<u>https://www.youtube.com/watch?v=h0Y9jDKqScQ&list=PLgMDNELGJ1CaNcuuQv9xN07ZWkXE-</u> wCGP

6. https://www.youtube.com/watch?v=m-uY4fja_Jw&list=PLOzRYVm0a65dVYOA7_3-N67Xu1NIrLnR0

7. <u>https://www.youtube.com/watch?v=-YgHdIqkbs0</u>

8. <u>https://www.youtube.com/watch?v=5-uQ4rLlWPE</u>

# List of Open Elective Subjects

S.No	<b>BoS Subjects from department of EEE</b>	Sem/Branch	Category		
	Open Elective Subjects				
1.	Artificial Neural Networks and Fuzzy Logic	NA	OE		
2.	Basic Electrical and Electronic Engineering	NA	OE		
3.	Energy Auditing and Demand Side Management	NA	OE		
4.	Electrical Measurements and Instrumentation	NA	OE		
5.	Utilization of Electrical Energy	NA	OE		
6.	Industrial Automation Engineering	NA	OE		
7.	Industrial Electrical Systems	NA	OE		
8.	Renewable Energy Conversion Systems	NA	OE		
9.	Power Quality	NA	OE		

### **1. ARTIFICIAL NEURAL NETWORKS & FUZZY LOGIC**

#### MODULE – 1 INTRODUCTION TO ARTIFICIAL INTELLIGENCE 10 hrs

Introduction to Artificial intelligence, Approaches to AI, Architectures of AI, Symbolic reasoning system, Rule based systems, Knowledge representation, Expert systems.

#### MODULE -2 ARTIFICIAL NEURAL NETWORKS 10 hrs

Basics of ANN, Comparison between Artificial and Biological Neural Networks, Basic Building Blocksof

ANN, Artificial Neural Network Terminologies, McCulloch Pitts Neuron Model, Learning Rules,

ADALINE and MADALINE Models, Perceptron Networks, Back Propagation Neural Networks – Associative Memories.

# MODULE-3ANN APPLICATIONS TO ELECTRICAL SYSTEMS8 hrsANN approach to: Electrical Load Forecasting Problem, System Identification, Control Systems, PatternRecognition.

### MODULE-4 CLASSICAL RELATIONS AND FUZZY RELATIONS 10 hrs

Classical Sets, Fuzzy Sets, Operations on classical sets, Properties of crisp sets, Operations on fuzzy sets,

Properties of Fuzzy sets, Fuzzy Relations- Cardinality, Cartesian product, Fuzzy compositions, Fuzzy Equivalence Relation & Fuzzy Tolerance Relation

#### MODULE-5 FUZZY LOGIC AND APPLICATION

Fuzzification & Defuzzification- Methods, Membership Functions, Fuzzy Rule base, Genetic Algorithm ,

Fuzzy Logic Controller Design, Features of a simple Fuzzy Logic Control system, NeuroFuzzy

Controller. Fuzzy Logic Implementation for Induction Motor Control, Switched Reluctance Motor

Control, Fuzzy Excitation Control Systems in Automatic Voltage Regulator, Fuzzy Logic

Controller in an 18 Bus Bar System.

#### Total: 48 hrs

10 hrs

#### **Text Book(s):**

1. S. N. Sivanandam, S. Sumathi and S. N. Deepa, "Introduction to Neural Networks using MATLAB", McGraw Hill Edition, 2006.

2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", Third Edition, WILEY India Edition, 2012.

3. Neural Networks - Simon Hakins , Pearson Education

#### **Reference Book(s):**

1. S. N. Sivanandam, S. Sumathi and S. N. Deepa, "Introduction to Fuzzy Logic using MATLAB", Springer International Edition, 2013.

2. Yung C. Shin and Chengying Xu, "Intelligent System – Modeling, Optimization & Control, CRC Press, 200

3. Elaine Rich, Kevin Knight ,Shivashankar B Nair, "Artificial intelligence" McGraw Hill third Edition

### 2. BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

MODULE – 1 DC & AC Circuits Electrical circuit elements (R - L and C) - Kirchhoff laws - Series and parallel connection of resistances with DC excitation. Superposition Theorem - Representation of sinusoidal waveforms - peak and rms values - phasor representation - real power - reactive power apparent power.

**DC Machines** 

#### **MODULE -2**

Principle and operation of DC Generator - EMF equations - principle and operation of DC Motor - Types of DC Motor - Brake Test on DC Shunt Motor - Characteristics of DC Motor -Applications. **AC MACHINES** 

#### **MODULE-3**

Principle and operation of Single Phase Transformer - OC and SC test on transformer principle and operation of Three Phase Induction Motor - Characteristics and Applications.

#### **MODULE-4**

#### **Semicondcutor Diodes**

PN diode, Diode as Switch, Zener Diode, Tunnel diode, Varactor diode, LED, Photodiode: their characteristics and applications

PART B:

#### **MODULE-5 Bipolar Junction Transistor** Bipolar Junction Transistor (BJT) - Types of Transistors, Operation of NPN and PNP Transistors, Input- Output Characteristics of BJT-CB, CE and CC Configurations, Relation between IC, IB and IE, Transistor Applications- Transistor as an Amplifier, Transistor as a Switch.

MODULE-6 Metal–Oxide–Semiconductor Field-Effect Transistor 08 hrs Introduction to MOSFET, Construction of depletion mode and enhancement mode of NMOS and PMOS, Drain characteristics of MOSFET, Transfer Characteristics of MOSFET, MOSFET as Switch, CMOS Inverter and it's Characteristics. Total: 48 hrs

#### **Text Book(s):**

1.D. P. Kothari and I. J. Nagrath - "Basic Electrical Engineering" - Tata McGraw Hill - 2010.

2.Basic Electrical and Electronics Engineering, M.S.Sukhija, T.K.Nagsarkar, Oxford University.

3.V.K. Mehta & Rohit Mehta, "Principles of Electronics" - S.Chand -2018.

4. Basic Electrical and Electronics Engineering, S.K Bhattacharya, Pearson Education, 2012.

#### **Reference Book(s):**

1. L. S. Bobrow - "Fundamentals of Electrical Engineering" - Oxford University Press - 2011.

2 J. Millman, C. Halkias, "Electronic Devices and Circuits", Tata Mc-Graw Hill, 4thEdition, 2010.

3.David A.Bell, "Electronic Devices and Circuits", Fifth Edition, Oxford University Press, 2009.

#### 08 hrs

08 hrs

08 hrs

**08 hrs** 

**08** hrs

#### **3.ENERGY AUDITING AND DEMAND SIDE MANAGEMENT**

#### MODULE -1**INTRODUCTION TO ENERGY AUDITING 10 hrs**

Energy Situation – World and India, Energy Consumption, Conservation, Energy audit- definitions, concept, types of audit, energy index, cost index, pie charts, Sankey diagrams, load profiles, Energy conservation schemes- Energy audit of industries

#### **MODULE -2 ENERGY MANAGEMENT** 9 hrs

Principles of energy management, organizing energy management program, initiating, planning, Controlling, promoting, monitoring, reporting. Energy manger, Qualities and functions, language ,Questionnaire - check list for top management.

#### **MODULE-3 ENERGY EFFICIENT MOTORS AND POWER** 10 hrs FACTOR IMPROVEMENT

Energy Efficient Motors, Factors Affecting Efficiency, Loss Distribution, Constructional Details, Characteristics - Variable Speed, Variable Duty Cycle Systems, RMS Hp- Voltage Variation-Voltage Unbalance- Over Motoring- Motor Energy Audit. Power Factor – Methods of Improvement, Power factor With Non Linear Loads.

#### LIGHTING AND ENERGY INSTRUMENTS FOR AUDIT **MODULE-4** 9 hrs

Good Lighting System Design and Practice, Lighting Control, Lighting Energy Audit - Energy Instruments- Watt Meter, Data Loggers, Thermocouples, Pyrometers, Lux Meters, Tong Testers, Application of PLC's.

**MODULE-5** 

#### CONCEPTS, ECONOMIC ASPECTS AND **10 hrs** COSTEFFECTIVENESS TESTS OF DSM PROGRAMS

Concept of DSM, Benefits of DSM, Different Techniques of DSM - Time of Day Pricing, Multi-Utility Power Exchange Model, Time of Day Models for Planning. Load Management, Load Priority Techniques, Peak Clipping, Peak Shifting, Valley Filling, Strategic Conservation, Energy Efficient Equipment. Basic payback calculations, Depreciation, Net present value calculations, Cost effectiveness Total : 48 hrs test for demand side management programs.

### Text Book(s):

- 1. Industrial Energy Management Systems, Arry C. White, Philip S. Schmidt, David R. Brown, Hemisphere Publishing Corporation, New York, 1994.
- 2. Fundamentals of Energy Engineering -Albert Thumann, Prentice Hall Inc, Englewood Cliffs, New Jersey 1984.
- 3. Handbook on Energy Audit and Environment Management, YPAbbi and Shashank Jain, TERI, 2006

### Reference Book(s):

- 1. Energy management by W.R. Murphy & G. Mckay Butter worth, Heinemann publications.
- 2. Energy management by Paul o" Callaghan, Mc-graw Hill Book company-1/e,1998
- 3. Energy efficient electric motors by John C. Andreas, Marcel Dekker Inc Ltd-2/e, 1995
- 4. Energy management hand book by W.C.Turner, john Wiley and sons
- 5. Energy management and good lighting practice: fuel efficiency- booklet12-EEO
- 6. Economic Analysis of Demand Side Programs and Projects California Standard Practice Manual, June

2002 - Free download available online

### 4.ELECTRICAL MEASUREME AND INSTRUMENTATION

# MODULE - 1Measurement of voltage & current10 hrsGeneral principles of measurements - essentials of indicating instruments - deflecting, damping, controlling

General principles of measurements –essentials of indicating instruments - deflecting, damping, controlling torques-Ammeters and voltmeters - moving coil, moving iron, constructional details, operation, Expression for deflecting & controlling torques and errors compensations- principles shunts and multipliers – extension of range.

#### MODULE -2 Measurement of Power, Energy, Power factor 10 hrs

**Power meters**: Dynamometer type wattmeter –1-phase and 3-phase - LPF and UPF- Double Element and Three Element wattmeter's.

**Energy meters**: Single Phase Induction Type Energy Meter – Driving and Braking Torques – Errors and Compensations. Three Phase Energy Meter-TOD meter

**P.F. Meters**: Dynamometer and Moving Iron Type – 1-ph and 3-ph Meters.

#### MODULE-3 Measurement of Resistance, Inductance and 9 hrs Capacitance

**Measurement of Resistance**: Kelvin's double bridge -Whetstone's bridge, sensitivity, limitations- loss of charge method -Megger method.

**Measurement of Inductance and Capacitance**: Maxwell's inductance and capacitance bridge-Hay's bridge- Anderson's bridge- Desauty's bridge -Schering bridge-weins bridge- Problems

MODULE-4 Extension of Instrument Ranges

**Instrument transformers**: Current Transformers and Potential Transformers – Ratio and Phase Angle Errors – Methods for Reduction of Errors-Design Considerations.

9 hrs

**Potentiometers:** Principle and Operation of D.C. Crompton's Potentiometer – Standardization – Measurement of unknown Resistance, Current, Voltage -AC Potentiometers: Polar and Coordinate types-Standardization – Applications.

### MODULE-5 Transducers 10 hrs

Definition and classification - common transducers for measurement of displacement, velocity, flow, liquid level, force, pressure, strain and temperature -LVDT, electromagnetic and ultrasonic flow meters, piezoelectric force transducer, load cell, strain gauge- bridge configuration for four strain gauges, RTD, Thermistors, thermocouple, data acquisition system. **Total : 48 hrs** 

#### Text Book(s):

 Electrical & Electronic Measurements and Instrumentation by AK Sawhney, Dhanpat Rai & Sons Digital Instrumentation, A.J. Bouwens, Tata Mc-Grawhill.-2017
 J. B. Gupta - A course in Electronic and Electrical measurements and Instrumentation, S. K. Kataria Publication-2020
 Electrical Measurements & Measuring Instruments by M.L.Anand (Author)-2014

#### **Reference Book(s):**

1 Electrical Measurements and Measuring Instruments (English, Paperback, F. C. Widdis, E. W. Golding) January 2011

2. Electrical & Electronic Measurement & Instrumentation by R. K. Rajput, 2nd Edition, S. Chand & Co., 2nd Edition, 2013.

### **5. UTILIZATION OF ELECTRICAL ENERGY**

#### MODULE – 1 **Electric Drives and Traction**

Fundamentals of electric drive - choice of an electric motor - application of motors for particular services traction generator set, traction motors, power transformers characteristic features of traction motor - systems of railway electrification - electric braking - train movement and energy consumption - traction motor control - track equipment and collection gear

#### **MODULE -2 Mechanics of Electric Traction 10 hrs** Mechanics of Train Movement. Speed-Time Curves of Different Services – Trapezoidal and Quadrilateral Speed-Time Curves - Numerical Problems. Calculations of Tractive Effort, Power, Specific Energy Consumption, Adhesive Weight and Coefficient of Adhesion. **MODULE-3** Illumination 10 hrs

Introduction - definition and meaning of terms used in illumination engineering classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapor lamps, fluorescent lamps -design of illumination systems - indoor lighting schemes factory lighting halls - outdoor lighting schemes - flood lighting - street lighting - UPSenergy saving lamps, LED – working principle of air conditioning system.

#### **MODULE-4 Heating And Welding** 8 hrs

Introduction - advantages of electric heating – modes of heat transfer - methods of electric heating -resistance heating - arc furnaces - induction heating - dielectric heating - electric welding - types -resistance welding - arc welding - power supply for arc welding radiation welding.

**Solar & Wind Energy Conversion System** 

Solar Energy Conversion System: Introduction - solar constant - terrestrial solar radiation - solar radiation geometry - estimation of average solar radiation - physical principles of the conversion of solar radiation into heat - flat-plate collectors transmissivity of cover system - energy balance equation and collector efficiency concentrating collector - advantages and disadvantages of concentrating collectors.

Wind Energy Conversion System: Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the blade

#### **Text Book(s):**

**MODULE-5** 

1. Utilization of Electric Energy, E. Openshaw Taylor and V. V. L. Rao, Universities Press. 2009.

2. N.V. Suryanarayana, "Utilisation of Electric Power", Wiley Eastern Limited, New Age International Limited, 1993

3. J.B.Gupta, "Utilisation Electric power and Electric Traction", S.K.Kataria and sons, 2000.

#### **Reference Book(s):**

1. Generation, distribution and utilization of electrical energy, C.L Wadhwa, Wiley Eastern Limited, 1993

2. R.K.Rajput, Utilisation of Electric Power, Laxmi publications private Limited., 2007

3. H.Partab, Art and Science of Utilisation of Electrical Energy", Dhanpat Rai and Co., New Delhi-2004.

4. G.D.Rai," Non-Conventional Energy sources", Khanna publications Ltd., New Delhi 1997

### 10 hrs

10 hrs

#### Total: 48 hrs

### 6. INDUSTRIAL AUTOMATION ENGINEERING

#### MODULE – 1 FUNDAMENTAL CONCEPTS OF INDUSTRIAL 10 hrs AUTOMATION

Definition of automation- Automation overview, Requirement of automation systems, Architecture of Industrial Automation system, Types of production and types of automation, automation strategies, levels of automation, Industrial bus systems: modbus & profibus

#### MODULE -2 AUTOMATION COMPONENTS 9 hrs

Sensors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH measurement. Actuators, process control valves, power electronics devices DIAC, TRIAC, power MOSFET and IGBT. Introduction of DC and AC servo drives for motion control.

#### MODULE-3 PROGRAMMABLE LOGIC CONTROLLERS 10 hrs

Introduction — Principles of operation – PLC Architecture and specifications – PLC hardware components Analog & digital I/O modules, CPU & memory module – Programming devices – PLC ladder diagram, Converting simple relay ladder diagram in to PLC relay ladder diagram. PLC programming Simple instructions – Manually operated switches – Mechanically operated a Proximity switches - Latching relays.

#### MODULE-4 APPLICATIONS OF PROGRAMMABLE LOGIC 9 hrs CONTROLLERS

Timer instructions - On delay, Off delay, Cyclic and Retentive timers, Up /Down Counters, control instructions – Data manipulating instructions, math instructions; Applications of PLC – Simple materials handling applications, Automatic control of warehouse door, Automatic lubrication of supplier Conveyor belt, motor control, Automatic car washing machine, Bottle label detection and process control application.

#### MODULE-5 DISTRIBUTION AUTOMATION & SCADA 10 hrs

**DISTRIBUTION AUTOMATION:** Distribution Automation (DA)-Benefits- Communication Technologies- Automatic Meter Reading(AMR)- Geographical Information System (GIS)- Consumer Information Service (CIS), Internet of things (IoT) for plant automation

**SCADA:** Introduction, Block Diagram, Components of SCADA, Functions of SCADA,SCADA applied to DA-Communication protocols in SCADA systems. **Total : 48 hrs** 

#### Text Book(s):

Industrial Instrumentation and Control By. S.K. Singh The McGraw Hill Companies,2nd Edition 2003
 Gary Dunning, Thomson Delmar, "Programmable Logic Controller", CeneageLearning,

3rd Edition,2005.

3. Bolton, "Programmable Logic Controllers" 5th Edition Newnes, ,2009

4. Electric Power Distribution Automation, Dr. M. K. Khedkar and Dr. G. M. Dhole,

University Science Press, 2010.

5. Electric Power Distribution, A.S. Pabla, Tata Mc Graw Hill (India) Pvt. Ltd., 6th Edition, 2011.

#### **Reference Book(s):**

1. C D Johnson, "Process Control Instrumentation Technology", Prentice Hall India,8th Edition, 2006.

2. E.A.Parr, Newnes ,NewDelhi,"Industrial Control Handbook",3rd Edition, 2000

3. Electric Power Distribution Engineering, Turan Gonen, CRC Press, 3rd Edition, 2014.

4. Electrical Power Systems for Industrial Plants, Kamalesh Das, JAICO Publishing House, 2008.

5. Electrical Power Distribution Systems, V. Kamaraju, Jain Book Depot. 2012.

#### Narayana Engineering College :: Gudur (Autonomous)

### 7.INDUSTRIAL ELECTRICAL SYSTEMS

#### MODULE – 1 Electrical System Components

LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components- Fuse, MCB, MCCB, ELCB, inverse current characteristics, symbols, single line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practices

#### MODULE -2 Residential and Commercial Electrical Systems 10 hrs

Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection Devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components.

#### MODULE-3 Illumination Systems 9 hrs

Understanding various terms regarding light, lumen, intensity, candle power, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of a lighting scheme for a residential and commercial premises, flood lighting.

# MODULE-4 Industrial Electrical Systems 10 hrs

HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction. Introduction to PCC, MCC panels. DG Systems, UPS System, Electrical Systems for the elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks.

#### MODULE-5 Industrial Electrical System Automation 9 hrs

Study of basic PLC, Role of in automation, advantages of process automation, PLC based control system design, Panel Metering and Introduction to SCADA system for distribution automation. Total : 48 hrs

#### Text Book(s):

 S. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publishers, 2008.
 K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007.

#### **Reference Book(s):**

 Singh and R. D. Singh, "Electrical estimating and costing", Dhanpat Rai and Co., 1997. Web site for IS Standards.
 H. Joshi, "Residential Commercial and Industrial Systems", McGraw Hill Education, 2008.

10 hrs

#### 8. RENEWABLE ENERGY CONVERSION SYSTEMS

#### MODULE – 1 **ENERGY CONSERVATION** 10 hrs

Over view of conventional & renewable energy sources, need & development of renewable energy sources, types of renewable energy systems, Energy scenario — global and national; Renewable energy potential, Energy for sustainable development, Global climate change, concept of Hybrid systems.

#### **SOLAR & WIND ENERGY SOURCES** MODULE -2 10 hrs

SOLAR ENERGY SOURCE: solar radiation, Measurements of Solar Radiation, Collectors, working principle of photo voltaic cell, Equivalent Circuit model, Performance Characteristics, Applications.

WIND ENERGY SOURCE: Introduction, site selection considerations for installing wind mill, Construction details of the wind mill (Wind Turbine Gear System), Types of Wind Power Plants.

#### **MODULE-3 THERMAL ENERGY & BIO-MASS 10 hrs**

THERMAL ENERGY: Thermo-electric generator, Concepts and design considerations of MHD generators, Cycle analysis of MHD systems

**BIO-MASS**: Biomass resources and their classification, Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking.

#### **MODULE-4 GEOTHERMAL ENERGY & OCEAN ENERGY** 9 hrs

GEOTHERMAL ENERGY: Principle of geothermal energy, Resources, types of wells, methods of harnessing the energy, Economic Aspects, scope in India.

OCEAN ENERGY: Ocean Thermal Energy Conversion (OTEC), Principle of operation, development of OTEC plants, Tidal and wave energy.

#### FUEL CELL ENERGY **MODULE-5**

Description, properties and operation of fuel cells, Major components & general characteristics offuel cells, Indirect methanol fuel cell systems. Phosphoric acid fuel cell systems and molten

carbonate fuel cell systems, applications.

#### **Text Book(s):**

- 1. Non conventional Energy sources, G.D. Rai, Khanna Publishers.
- 2. Renewable energy resources: Tiwari and ghosal, Narosa publication.

3. Renewable energy sources and conversion technology, Bansal Keemann, Meliss, Tata Mc Graw Hill 4.D.P.Kothari, Rakesh Ranjan and K.C.Singal, Renewable Energy Resources & Emerging Tech prentice Hall of India Pvt.Ltd

5.Non conventional energy resources "Prentice Hall Inc, India by Sawhney G.S

### Reference Book(s):

- 1. Renewable Energy Sources: Twidell & Weir, CRC Press.
- 2. Solar Energy/ S.P. Sukhatme, Tata McGraw-Hill.
- 3. Non Conventional Energy Systems: K M. Mittal, A H WheelerPublishing Co Ltd.
- 4. Renewable Energy Technologies: Ramesh & Kumar, Narosa publication. 5. Biomass Energy, Oxford & IBH Publication Co.

#### 9 hrs

#### Total : 48 hrs

### 9. POWER QUALITY

#### MODULE -1

Definition of Power Quality- Power Quality Terminology – Classification of Power Quality Issues-Magnitude Versus Duration Plot - Power Quality Standards - Responsibilities of Suppliers and Users of Electric Power-CBEMA and ITI Curves.

#### MODULE -2 Transients, Short Duration and Long Duration

Variations

Introduction

Categories and Characteristics of Electromagnetic Phenomena in Power Systems- Impulsive and Oscillatory Transients-Interruption - Sag-Swell-Sustained Interruption - Under Voltage -Over Voltage–Outage. Sources of Different Power Quality

Disturbances- Principles of Regulating the Voltage- Conventional Devices for Voltage Regulation.

**MODULE-3** Fundamentals Of Harmonics & Applied Harmonics 10 hrs Harmonic Distortion, Voltage Versus Current Distortion, Harmonics Versus Transients, Power System Quality Under Non Sinusoidal Conditions, Harmonic Indices, Harmonic Sources from Commercial Loads, Harmonic Sources from Industrial Loads. Applied

Harmonics: Effects Of Harmonics, Harmonic Distortion Evaluations, Principles of Controlling Harmonics, Devices for Controlling Harmonic Distortion. 10 hrs

#### **MODULE-4 Power Quality Monitoring**

Power Quality Benchmarking-Monitoring Considerations- Choosing Monitoring Locations-Permanent Power Quality Monitoring Equipment-Historical Perspective of Power Quality Measuring Instruments- Power Quality Measurement Equipment-Types of Instruments-Assessment of Power Quality Measurement Data- Power Quality Monitoring Standards.

MODULE-5 Power Quality Enhancement Using Custom Power 8 hrs Devices

Introduction to Custom Power Devices-Network Reconfiguring Type: Solid State Current Limiter (SSCL)-Solid State Breaker (SSB) -Solid State Transfer Switch (SSTS) -Type: Dynamic Voltage Restorer (DVR)-Unified Power Quality Compensating Conditioner(UPQC)-Principle of Operation Only.

Total : 48 hrs

#### **Text Book(s):**

1. Electrical Power Systems Quality, Roger C. Dugan, Mark F. McGranaghan, Surva Santoso, H.Wayne Beaty, Mc Graw Hill Education (India) Pvt. Ltd., 3rd Edition, 2012.

2. Power quality, C. Sankaran, CRC Press, 2001.

3. J.Arillaga, N.R.Watson and S.Chen, "Power System Harmonics", John Wiley and Sons, England, 2005

#### **Reference Book(s):**

1. Understanding Power quality problems – Voltage Sags and Interruptions, Math H. J. Bollen IEEE Press Series on Power Engineering, WILEY, 2007.

2. Power quality – VAR Compensation in Power Systems, R. Sastry Vedam, Mulukutla S. Sarma, CRC Press, 2009, First Indian Reprint 2013.

3. Fundamentals of Electric Power Quality, Surya Santoso, Create Space, 2012.

#### 10 hrs

10 hrs

### LIST OF HONOR SUBJECTS

S.NO	Course code	Course Name	L-T-P	Credits
1	21EEH001	Adaptive Control Systems	3-1-0	4
2	21EEH002	AC Drives	3-1-0	4
3	21EEH003	Advanced Power System Protection	3-1-0	4
4	21EEH004	Power System Wide area Monitoring and Control	3-1-0	4
5	21EEH005	Restructed Power Systems	3-1-0	4

#### **1. ADAPTIVE CONTROL SYSTEMS**

**MODULE** – IIntroduction, Block Diagram of an Adaptive System, Effects of Process Variations on System Performance, Types of Adaptive Schemes, Formulation of the Adaptive Control Problem, Abuses of Adaptive Control, Least Squares Method and Regression Models for Parameter Estimation – Theorems, Estimating Parameters in Models of Dynamic Systems, The Finite Impulse Response Model, The Transfer Function Model, and The Stochastic Model

#### MODULE – II

Block Diagram of Deterministic Self Tuning Regulator (STR), Pole Placement Design – Process Model, Model Following, Causality Conditions. Indirect STRs - Estimation, Continuous - Time STRs, Direct STRs - Minimum Phase Systems, Adaptive Control Algorithm, Feed Forward Control, Non Minimum Phase Systems – Adaptive Control Algorithm, Algorithm For Hybrid STR.

#### **MODULE – III**

Design of Minimum Variance and Moving - Average Controllers, Stochastic STR - Indirect STR, Algorithm for Basic STR, Theorems on Asymptotic Properties. Unification of Direct STRs, Generalized Direct Self Tuning Algorithm, Self Tuning Feed Forward Control. Linear Quadratic STR - Theorems on LQG Control, Algorithms for Indirect LQG - STRs Based on Spectral Factorization and Riccati Equation.

#### **MODULE – IV**

Model Reference Adaptive System (MRAS), The MIT Rule, Block Diagram of an MRAS for adjustment of Feed Forward Gain based on MIT Rule. Adaptation Gain - Methods for determination. Design of MRAS using Lyapunov Theory – Block Diagram of an MRAS basedon Lyapunov Theory for a First Order System. Proof of The Kalman - Yakubovich Lemma, Adjustment Rules for Adaptive Systems, Relation between MRAS and STR.

#### MODULE - V

Gain Scheduling – Principle, Block Diagram, Design of Gain Scheduling Controllers, Nonlinear Transformations, Block Schematic of a Controller based on Nonlinear Transformations. Application of Gain Scheduling for Ship Steering, Flight Control. Self Oscillating Adaptive System (SOAS) - Principle, Block Diagram, Properties of The Basic SOAS, Procedure for Design of SOAS. Industrial Adaptive Controllers and applications.

#### **Text books**

1. K.J.Astrom and Bjorn Wittenmark, Adaptive control, Pearson Edu., 2nd Edn.Sastry, Adaptive control

#### References

1. V.V.Chalam, Adaptive Control System - Techniques & Applications, Marcel Dekker Inc.

2. Miskhin and Braun, Adaptive control systems, MC Graw Hill

3. Karl Johan Åström, Graham Clifford Goodwin, P. R. Kumar, Adaptive Control, Filteringand Signal Processing

4. G.C. Goodwin, Adaptive control.

#### 2. AC DRIVES

**MODULE** -I Phase Controlled Induction Motor Drive Stator Voltage Control of Induction Motor, Phase-Controlled Converter Fed Induction Motor, Power Circuit and Gating, Reversible Phase-Controlled Induction Motor Drive, Torque-Speed Characteristics.

**MODULE** -II: Voltage Source Inverter Fed Induction Motor Drive Stator Voltage and Frequency Control of Induction Motor, Torque-Speed Characteristic Static Frequency Changers, PWM Inverter Fed Induction Motor Drive, Variable-Voltage Variable- Frequency Operation of Induction Motor, Constant E/f And V/f Control Schemes, Slip Regulation.

**MODULE** -III: Rotor Side Control of Slip-Ring Induction Motor Slip-Power Recovery Schemes, Steady-State Analysis- Range of Slip, Equivalent Circuit, Performance Characteristics; Rating of Converters.

Vector Control of Induction Motor:

Principles of Vector Control, Direct Vector Control, Indirect Vector Control, Implementation

- Block Diagram, Estimation of Flux, Flux Weakening Operation.

**MODULE** -IV: Control of Synchronous Motor Drives Synchronous Motor - Control Strategies-Constant Torque Angle Control-Power Factor Control, Constant Flux Control, Flux Weakening Operation, Load Commutated Inverter Fed Synchronous Motor Drive, Motoring and Regeneration, Phasor Diagrams.

**MODULE** -V: PMSM and BLDC Drives Characteristics of Permanent Magnet, Synchronous Machines With Permanent Magnet, Vector Control of PMSM- Motor Model and Control Scheme, Constant Torque Angle Control, Constant Mutual Flux Linkages, Unity PF Control. Modelling of PM Brushless DC Motor, Drive Scheme, Commutation Torque Ripple, Phase Advancing.

#### **TEXT BOOK:**

1. R. Krishnan, Electric Motor Drives Modelling, Analysis & control,

PearsonEducation, 2001.

2. B. K. Bose Modern Power Electronics and AC Drives, Pearson Publications, 2001.

#### **REFERENCE BOOKS:**

- 1. MD Murphy & FG Turn Bull, Power Electronics control of AC motors, 1st Edition,Pergaman press, 1998.
- 2. G.K. Dubey, **Fundamentals of Electrical Drives**, Narosa Publications, 1995.
- 3. S. K. Pillai, A First Course on Electrical Drives, New Age International, 1989.
- 4. Vedam Subrahmanyam, Electric Drives: Concepts and Applications, 2nd

Edition, McGraw Hill Education, 2017

#### **3. ADVANCED POWER SYSTEM PROTECTION**

#### **MODULE** -I: Static Relays:

Advantages of static relays – Basic construction of static relays – Level detectors – Replica impedance – Mixing circuits – General equation for two input phase and amplitude comparators -Duality between amplitude and phase comparators. Amplitude Comparators: Circulating current type and opposed voltage type – rectifier bridge comparators, Direct and Instantaneous comparators.

#### MODULE -II: Phase Comparators:

Coincidence circuit type – block spike phase comparator, techniques to measure the period of coincidence – Integrating type – Rectifier and Vector product type – Phase comparators. Static Over Current Relays: Instantaneous over-current relay – Time over-current relays-basic principles – definite time and Inverse definite time over-current relays.

#### **MODULE**: Static Differential Relays:

Analysis of Static Differential Relays – Static Relay schemes – Duo bias transformer differential protection – Harmonic restraint relay. Static Distance Relays: Static impedance-reactance – MHO and angle impedance relay-sampling comparator – realization of reactance and MHO relay using sampling comparator.

#### **MODULE** -IV: Multi-Input Comparators:

Conic section characteristics -Three input amplitude comparator – comparator-switched distance schemes – Poly phase distance schemes – phase fault scheme – three phase scheme – combined and ground fault scheme. Power Swings: Effect of power swings on the performance of distance relays – Power swing analysis – Principle of out of step tripping and blocking relays – effect of line and length and source impedance on distance relays.

#### **MODULE** -V: Microprocessor Based Protective Relays:

Block diagram and flowchart approach only – Over current relays – impedance relays – directional relay – reactance relay – Generalized mathematical expressions for distance relays -measurement of resistance and reactance – MHO and offset MHO relays – Realization of MHO characteristics – Realization of offset MHO characteristics – Basic principle of Digital computer relaying.

#### TEXT BOOK:

• Badri Ram and D. N. Vishwakarma, "Power system protection and Switch gear ", TMH publication New Delhi 1995.

#### **REFERENCES**:

- T.S. Madhava Rao, "Static relays", TMH publication, second edition, 1989.
- Protection and Switchgear, Bhavesh Bhalja, R. P. Maheshwari, Nilesh G. Chothani, Oxford University Press.
- Electrical Power System Protection, C. Christopoulos and A. Wright, Springer International.

#### 4. POWER SYSTEM WIDE AREA MONITORING AND CONTROL

#### **MODULE - I : COMPUTER CONTROL OF POWER SYSTEMS**

Need for real - time and computer control of power systems, operating states of a power system - 3 state & 5 states operation of power system - Supervisory Control and Data Acquisition system (SCADA), implementation considerations, energy control centers. WAMS (Wide Area Measurement system): Architecture, Components of WAMS, GUI (Graphical User Interface), Applications: Voltage Stability Assessment, Frequency stability Assessment, Power Oscillation Assessment, Communication needs of WAMS, WAMPAC (Wide Area Monitoring Protection & Control), RAS (Remedial Action Scheme). Standards: IEEE 1344, IEEE C37.118 (2005), IEEE Standard C37.111-1999 (COMTRADE), IEC61850 GOOSE.

#### **MODULE - II : STATE ESTIMATION IN POWER SYSTEMS**

Introduction, Power system state estimation, Maximum likelihood, Weighted least Square estimation, Weighted least square estimation. State Estimation of AC Networks: Types of measurements, Linear weighted least square (WLS) estimation theory, DC Load flow based WLS state estimation, Linearised model of WLS state estimation of Non - Linear AC power systems, sequential and non - Sequential methods to process measurements, Typical results of state estimation on an Ac network.

#### MODULE - III : TYPES OF STATE ESTIMATION AND NETWORK OBSERVABILITY

State estimation by conventional WLS (normal equations), Orthogonal decomposition and its algorithm, hybrid method. Tracking of state estimation, Dynamic state estimation, Detection and identification of bad measurements, estimation of quantities not being measured. Network observability and pseudo-measurements, observability by graphical technique and triangularisation approach, Optimal meter placement, Application of power system state estimation.

#### MODULE - IV : POWER SYSTEM SECURITY ANALYSIS

Concept of security, Security analysis and monitoring, factors affecting power system security, detection of network problems, an overview of security analysis. Contingency analysis for generator and line outages by Interactive Linear Power Flow (ILPF) method, Fast decoupled inverse Lemma based approach, network sensitivity factors, Contingency selection, concentric relaxation and bounding.

#### **MODULE – V: VOLTAGE STABILITY**

Basic concepts, Voltage collapse – general characterization, clasiffication, Voltage stability analysis – modeling, dynamic analysis, static analysis, shortest distance to instability, continuation power flow analysis, prevention of voltage collapse – design measures, operating measures.

#### **TEXT BOOKS:**

1Allen J. Wood and Bruce Woolenberg, Power System Generation, Operation and Control, John Wiley and Sons, 1996.

2.John J. Grainger and William D Stevenson Jr, Power System Analysis, McGraw Hill ISE, 1994.

#### **REFERENCE BOOKS:**

1.E. Handschin, Real-time Control of Electrical Power Systems, Elsevier Publications & Co, 1988.

2. Special Issue on Computer Control of Power Systems, IEEE Proc, July 1974.

3.P. Kundur, Power System Stability and Control, McGraw Hill.

4.Fahd Hashiesh, M. M. Mansour, Hossam E. Mostafa Fahd Hashiesh, M. M. Mansour, Hossam E. Mostafa, Wide Area Monitoring, Protection and Control: The Gateway to Smart Grids, Lambert Academic Publishing.

#### **5. RESTRUCTURED POWER SYSTEMS**

#### MODULE I: KEY ISSUES IN ELECTRIC UTILITIES

Introduction – Restructuring models – Independent System Operator (ISO) – Power Exchange Market operations – Market Power – Standard cost – Transmission Pricing – Congestion Pricing – Management of Inter zonal/Intra zonal Congestion.

# MODULE II: OPEN ACCESS SAME-TIME INFORMATION SYSTEM (OASIS) & MARKETPOWER

Structure of OASIS - Posting of Information – Transfer capability on OASIS. Market Power: Introduction - Different types of market Power – Mitigation of Market Power - Examples.

#### MODULE III: AVAILABLE TRANSFER CAPABILITY (ATC) & ELECTRICITY PRICING

Transfer Capability Issues – ATC – TTC – TRM – CBM Calculations – Calculation of ATC based on power flow. Electricity Pricing: Introduction – Electricity Price Volatility Electricity Price Indexes – Challenges to Electricity Pricing – Construction of Forward Price Curves – Short-time Price Forecasting.

#### MODULE IV: POWER SYSTEM OPERATION IN COMPETITIVE ENVIRONMENT

Introduction – Operational Planning Activities of ISO- The ISO in Pool Markets – The ISO in Bilateral Markets – Operational Planning Activities of a GENCO.

# MODULE V: TRANSMISSION COST ALLOCATION METHODS & ANCILLARY SERVICES MANAGEMENT

Introduction - Transmission Cost Allocation Methods : Postage Stamp Rate Method - Contract Path Method - MW-Mile Method – Unused Transmission Capacity Method - MVA-Mile method – Comparison of cost allocation methods. Ancillary Services Management: Introduction – Reactive Power as an Ancillary Service – a Review – Synchronous Generators as Ancillary Service Providers.

#### **TEXT BOOKS :**

- 1. Kankar Bhattacharya, Math H.J. Boller and Jaap E.Daalder, Operation of RestructuredPower System, Kulwer Academic Publishers, 2001.
- 2. Mohammad Shahidehpour and Muwaffaq alomoush, Restructured Electrical Power Systems, Marcel Dekker, Inc., 2001.

#### **REFERENCE BOOKS:**

1. Loi Lei Lai, Power System Restructuring and Deregulation, John Wiley & Sons Ltd., England.

## LIST OF MINOR SUBJECTS

S.NO.	Course code	Course Name	L-T-P	Credits
1	21EEM001	Electrical Technology	3-1-0	4
2	21EEM002	Electrical Measurements and Instrumentation	3-1-0	4
3	21EEM003	Power System Architecture	3-1-0	4
4	21EEM004	Utilization of Electrical Energy	3-1-0	4
5	21EEM005	Linear Control Systems	3-1-0	4

#### **1. ELECTRICAL TECHNOLOGY**

#### MODULE – 1 DC GENERATORS

D.C. Generators– Principle of Operation– Constructional Features– E. M.F Equation–Numerical Problems– Methods of Excitation– Separately Excited and Self Excited Generators– Build-Up of E.M.F, OCC.

#### MODULE -2 D.C MOTORS

D.C Motors– Principle of Operation– Back E.M.F.–Torque Equation–Types of DC motors, Characteristicsand Application of Shunt, Series and Compound Motors-Speed Control of D.C. Motors: Armature Voltage and Field Flux Control Methods. Three Point Starter-Losses–Swinburne's Test.

#### MODULE-3 SINGLE PHASE TRANSFORMERS

Single Phase Transformers- Constructional Details- Emf Equation- Operation on No Load and on Load -Phasor Diagrams -Equivalent Circuit- Losses and Efficiency-Regulation-OC and SC Tests - Predetermination of Efficiency and Regulation.

#### MODULE-4 POLYPHASE INDUCTION MOTORS

Polyphase Induction Motors-Construction Details of Cage and Wound Rotor Machines Principle of Operation–Slip-Rotor Emf and Rotor Frequency-Torque Equation-Torque-Slip Characteristics.

#### MODULE-5 SYNCHRONOUS MACHINES

Synchronous Machines-Principle And Constructional Features of Salient Pole and Round Rotor Machines– E.M.F Equation- Voltage Regulation by Synchronous Impedance Method- Theory of Operation of Synchronous Motor.

#### **Total hours: 48 hours**

#### Text Book(s):

1. Electrical Machinery, P.S. Bimbhra, Khanna Publishers, 7th Edition, 2011.

2. Basic Electrical Engineering –By T.K.Nagasarkar and M.S. Sukhija Oxford University Press.

3. Electric Machines 4th edition, D.P.Kothari and I.J. Nagrath, Mc Graw Hill Education (India) Pvt.

Ltd., 4th Edition, 2010, 16th Reprint 2015.

#### **Reference Book(s):**

- 1. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw HillEducation, 2013.
- 2. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.
- 3. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.

### 2. ELECTRICAL MEASUREMENTS AND INSTRUMENTATION

#### MODULE – 1 Measurement of voltage & current

General principles of measurements –essentials of indicating instruments - deflecting, damping, controlling torques-Ammeters and voltmeters - moving coil, moving iron, constructional details, operation, Expression for deflecting & controlling torques and errors compensations- principles shunts and multipliers – extension of range.

#### MODULE -2 Measurement of Power, Energy, Power factor

**Power meters**: Dynamometer type wattmeter –1-phase and 3-phase - LPF and UPF- Double Element and Three Element wattmeter's.

**Energy meters**: Single Phase Induction Type Energy Meter – Driving and Braking Torques – Errors and Compensations. Three Phase Energy Meter-TOD meter

**P.F. Meters**: Dynamometer and Moving Iron Type – 1-ph and 3-ph Meters.

# MODULE-3 Measurement of Resistance, Inductance and Capacitance

**Measurement of Resistance**: Kelvin's double bridge -Whetstone's bridge, sensitivity, limitations- loss of charge method -Megger method.

**Measurement of Inductance and Capacitance**: Maxwell's inductance and capacitance bridge-Hay's bridge- Anderson's bridge- Desauty's bridge -Schering bridge-weins bridge- Problems

#### MODULE-4 Extension of Instrument Ranges

**Instrument transformers**: Current Transformers and Potential Transformers – Ratio and Phase Angle Errors – Methods for Reduction of Errors-Design Considerations.

**Potentiometers:** Principle and Operation of D.C. Crompton's Potentiometer – Standardization – Measurement of unknown Resistance, Current, Voltage -AC Potentiometers: Polar and Coordinate types-Standardization – Applications.

#### **MODULE-5**

#### Transducers

Definition and classification - common transducers for measurement of displacement, velocity, flow, liquid level, force, pressure, strain and temperature -LVDT, electromagnetic and ultrasonic flow meters, piezoelectric force transducer, load cell, strain gauge- bridge configuration for four strain gauges, RTD, Thermistors, thermocouple, data acquisition system.

Total: 48 hrs

#### Text Book(s):

4. Electrical & Electronic Measurements and Instrumentation by AK Sawhney, Dhanpat Rai & Sons Digital Instrumentation, A.J. Bouwens, Tata Mc-Graw hill.-2017

5. J. B. Gupta - A course in Electronic and Electrical measurements and Instrumentation, S. K. Kataria Publication-2020

6. Electrical Measurements & Measuring Instruments by M.L.Anand (Author)-2014

#### **Reference Book(s):**

1 Electrical Measurements and Measuring Instruments (English, Paperback, F. C. Widdis, E. W. Golding) January 2011

2. Electrical & Electronic Measurement & Instrumentation by R. K. Rajput, 2nd Edition, S. Chand & Co., 2nd Edition, 2013.

#### **3. POWER SYSTEM ARCHITECTURE**

#### MODULE – 1

#### Non Renewable Generating Stations

**Thermal Power plant:** Importance of electrical power generation-Sources of energy-Conventional and non-conventional sources-Block Diagram of Thermal Power Station (TPS).

**Hydro Power plant:** Merits and demerits of hydroelectric power plants, Selection of site. General arrangement of hydel plant, Classification of the plants.

**Nuclear Power plant**: Introduction, Merits and demerits, selection of site, Nuclear reaction, Nuclearfuels, Nuclear plant and layout.

#### MODULE-2

#### **Renewable Generating Stations**

**Solar Power Generation**: Solar Cell Fundamentals, Solar Cell Characteristics, Solar Cell Classification, Maximizing the Solar PV Output and Load Matching. Maximum Power Point Tracker, Solar PV Systems. **Wind Power Generation**: Basic principles of wind energy conversion power in the wind-Forces on blades and thrust on turbines – Wind energy conversion – site selection considerations– types of wind energy collectors.

**Bio Energy:** Biomass conversion technologies, Bio gas generation, Factors affecting bio digestion or generation of gas, Classification of bio gas plants.

#### **MODULE-3**

#### **Transmission Line Parameters**

Types of Conductors, Resistance For Solid Conductors – Skin Effect- Calculation of Inductance for Single Phase and Three Phase, Concept of GMR & GMD, Symmetrical and Asymmetrical Conductor Configuration with and without Transposition, Numerical Problems, Capacitance Calculations for Symmetrical and Asymmetrical Single and Three Phase, Effect of Ground on Capacitance.

#### **MODULE-4**

#### Modeling of Transmission Lines

Classification of Transmission Lines and their equivalent circuits- Nominal-T, Nominal- $\pi$ . Mathematical Solutions to Estimate Regulation and Efficiency. Evaluation of A,B,C,D Constants,Surge Impedance & itsLoading, Wavelengths and Propagation, Ferranti Effect, Charging Current.

#### **MODULE-5**

#### Performance of Transmission Line

**Insulators:** Types of Insulators, String Efficiency and Methods for Improvement, and numerical problem. **Corona:** Corona Phenomenon, Factors Affecting Corona, Critical and disruptive Voltages and Power Loss, Radio Interference.**Sag and Tension Calculations:** Sag and Tension Calculations with Equal and Unequal Heights of Towers,Effect of Wind and Ice on Weight of Conductor, StringingChart, Sag Template

Total: 48 hrs

#### Text Book(s):

 Power System Engineering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, Dhanpat Rai &Co. Pvt. Ltd., 1999
 Non Conventional Energy Sources by G.D. Rai, Khanna Publishers, 2000.

#### 4. UTILIZATION OF ELECTRICAL ENERGY

#### MODULE – 1 Electric Drives and Traction

Fundamentals of electric drive - choice of an electric motor - application of motors for particular services traction generator set, traction motors, power transformers - characteristic features of traction motor - systems of railway electrification - electric braking - train movement and energy consumption - traction motor control - track equipment and collection gear

#### MODULE -2 Mechanics of Electric Traction

Mechanics of Train Movement. Speed-Time Curves of Different Services – Trapezoidal and Quadrilateral Speed-Time Curves – Numerical Problems. Calculations of Tractive Effort, Power, Specific Energy Consumption, Adhesive Weight and Coefficient of Adhesion.

#### **MODULE-3**

#### Illumination

Introduction - definition and meaning of terms used in illumination engineering - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapor lamps, fluorescent lamps –design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting – UPS- energy saving lamps, LED – working principle of air conditioning system.

#### **MODULE-4**

#### **Heating And Welding**

Introduction - advantages of electric heating – modes of heat transfer - methods of electric heating - resistance heating - arc furnaces - induction heating - dielectric heating - electric welding – types - resistance welding - arc welding - power supply for arc welding - radiation welding.

#### MODULE-5 Solar & Wind Energy Conversion System

**Solar Energy Conversion System:** Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors. **Wind Energy Conversion System:** Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the blade

#### Total: 48 hrs

#### Text Book(s):

 Utilization of Electric Energy, E. Openshaw Taylor and V. V. L. Rao, Universities Press, 2009.
 N.V. Suryanarayana, "Utilisation of Electric Power", Wiley Eastern Limited, New Age International Limited, 1993

3. J.B.Gupta, "Utilisation Electric power and Electric Traction", S.K.Kataria and sons, 2000.

#### **Reference Book(s):**

1. Generation, distribution and utilization of electrical energy, C.L Wadhwa, Wiley Eastern Limited,1993

2. R.K.Rajput, Utilisation of Electric Power, Laxmi publications private Limited., 2007

3. H.Partab, Art and Science of Utilisation of Electrical Energy", Dhanpat Rai and Co., New Delhi-2004.

4. G.D.Rai," Non-Conventional Energy sources", Khanna publications Ltd., New Delhi 1997

#### **5. LINEAR CONTROL SYSTEMS**

#### MODULE – 1

#### **Introduction To Control Systems**

Examples & Classification of control systems, merits and demerits of Open Loop and closed loop control systems, Effects of positive and negative feedback Mathematical modelling and transfer function of Electrical and Mechanical systems, Analogous systems.

**Control System Components**: DC Servo motor, AC Servo motor, Synchro Transmitter & Receiver **Block diagrams**: Block diagram representation of control systems, Block Diagram Reduction Rules .

Signal flow graph: Definitions, Reduction using Mason's gain formula.

#### **MODULE-2**

#### **Time Response Analysis**

Standard test signals, Time response of first order and second order un damped, under damped, criticallydamped and over damped systems, Time domain specifications. **Error Analysis:** Steady state Error, static error coefficient of type 0,1, 2 systems.

#### **MODULE-3**

#### **Stability Analysis**

**Stability:** The concept of stability, Routh's stability criterion, limitations of Routh's stability. **Root locus plot**: The root locus concept, construction of root loci, effects of adding poles and zeros toG(s)H(s) on the root loci.

#### **MODULE-4**

#### **Frequency Response Analysis**

Introduction, Frequency domain specifications, Bode plot, polar plot, Transfer function from the Bode Diagram, Stability Analysis from Bode Plots. Polar Plots, Nyquist Plots. **Compensation Techniques:** Lag, Lead, Lag-Lead Compensators.

#### **MODULE-5**

#### **State Space Analysis**

**Introduction:** Concepts of state, state variables and state model, derivation of state models from differential equations, Diagonalization.

**Solution of state equation:** Solving the Time invariant state Equations, State Transition Matrixand it's Properties. (2h)The concepts of controllability and observability.

#### Total : 48 hrs

#### Text Book(s):

- 1. "Control Systems Engineering, I. J. Nagrath and M. Gopal, New Age InternationalPublishers,5th edition, 2007, Reprint 2012.
- 2. Control Systems by A. Anand Kumar, PHI Learning pvt. Ltd., second edition

#### **Reference Book(s):**

- 1. Norman S. Nise, "Control Systems Engineering", John Wiley & Sons PTE Ltd, 2013
- 2. Modern Control Engineering, Katsuhiko Ogata, PEARSON, 1st Impression 2015.
- 3. Automatic Control Systems, Farid Golnaraghi and Benjamin. C. Kuo, WILEY, 9th Edition, 2010.